Capture Hi-C identifies putative target genes at 33 breast cancer risk loci
Risk loci for breast cancer have been identified by genome-wide association studies. Here, the authors use Capture Hi-C to identify 110 putative target genes at 33 loci and assessed associations of gene expression, SNP genotype, and survival, providing evidence of mechanisms that may influence the p...
Enregistré dans:
Auteurs principaux: | Joseph S. Baxter, Olivia C. Leavy, Nicola H. Dryden, Sarah Maguire, Nichola Johnson, Vita Fedele, Nikiana Simigdala, Lesley-Ann Martin, Simon Andrews, Steven W. Wingett, Ioannis Assiotis, Kerry Fenwick, Ritika Chauhan, Alistair G. Rust, Nick Orr, Frank Dudbridge, Syed Haider, Olivia Fletcher |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/04f38edcab7d46faa2e61354e4ef0a11 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
par: Merve Sahin, et autres
Publié: (2021) -
HiCancer: accurate and complete cancer genome phasing with Hi-C reads
par: Weihua Pan, et autres
Publié: (2021) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
par: Yan Zhang, et autres
Publié: (2018) -
Genetic variants at chromosomes 2q35, 5p12, 6q25.1, 10q26.13, and 16q12.1 influence the risk of breast cancer in men.
par: Nick Orr, et autres
Publié: (2011) -
Identification of significant chromatin contacts from HiChIP data by FitHiChIP
par: Sourya Bhattacharyya, et autres
Publié: (2019)