Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy

Abstract Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based supera...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dan Qian, Jiawei Xue, Anfeng Zhang, Yao Li, Nobumichi Tamura, Zhongxiao Song, Kai Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0509c68002f7470da47f20ea1e067d3e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0509c68002f7470da47f20ea1e067d3e
record_format dspace
spelling oai:doaj.org-article:0509c68002f7470da47f20ea1e067d3e2021-12-02T12:32:30ZStatistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy10.1038/s41598-017-03051-x2045-2322https://doaj.org/article/0509c68002f7470da47f20ea1e067d3e2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03051-xhttps://doaj.org/toc/2045-2322Abstract Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane. Based on Schmid’s law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.Dan QianJiawei XueAnfeng ZhangYao LiNobumichi TamuraZhongxiao SongKai ChenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Dan Qian
Jiawei Xue
Anfeng Zhang
Yao Li
Nobumichi Tamura
Zhongxiao Song
Kai Chen
Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy
description Abstract Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane. Based on Schmid’s law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.
format article
author Dan Qian
Jiawei Xue
Anfeng Zhang
Yao Li
Nobumichi Tamura
Zhongxiao Song
Kai Chen
author_facet Dan Qian
Jiawei Xue
Anfeng Zhang
Yao Li
Nobumichi Tamura
Zhongxiao Song
Kai Chen
author_sort Dan Qian
title Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy
title_short Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy
title_full Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy
title_fullStr Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy
title_full_unstemmed Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy
title_sort statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3d printed ni-based superalloy
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/0509c68002f7470da47f20ea1e067d3e
work_keys_str_mv AT danqian statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
AT jiaweixue statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
AT anfengzhang statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
AT yaoli statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
AT nobumichitamura statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
AT zhongxiaosong statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
AT kaichen statisticalstudyofductilitydipcrackinginducedplasticdeformationinpolycrystallinelaser3dprintednibasedsuperalloy
_version_ 1718394018110373888