Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study
In traditional hospital systems, diagnosis and localization of melanoma are the critical challenges for pathological analysis, treatment instructions, and prognosis evaluation particularly in skin diseases. In literature, various studies have been reported to address these issues; however, a promine...
Guardado en:
Autores principales: | Tao Li, Peizhen Xie, Jie Liu, Mingliang Chen, Shuang Zhao, Wenjie Kang, Ke Zuo, Fangfang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/054060776d4d41d3bc4f69e6fe2b5f0f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
por: Peizhen Xie, et al.
Publicado: (2021) -
Penetration Force And Cannula Sliding Profiles Of Different Pen Needles: The PICASSO Study [Erratum]
por: Leonardi L, et al.
Publicado: (2019) -
Automated cyclers used in peritoneal dialysis: technical aspects for the clinician
por: Chaudhry RI, et al.
Publicado: (2015) -
Automated data-driven mass spectrometry for improved analysis of lipids with dual dissociation techniques
por: Seul Kee Byeon, et al.
Publicado: (2021) -
Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy
por: Kasper ME, et al.
Publicado: (2015)