Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study
In traditional hospital systems, diagnosis and localization of melanoma are the critical challenges for pathological analysis, treatment instructions, and prognosis evaluation particularly in skin diseases. In literature, various studies have been reported to address these issues; however, a promine...
Enregistré dans:
Auteurs principaux: | Tao Li, Peizhen Xie, Jie Liu, Mingliang Chen, Shuang Zhao, Wenjie Kang, Ke Zuo, Fangfang Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/054060776d4d41d3bc4f69e6fe2b5f0f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
par: Peizhen Xie, et autres
Publié: (2021) -
Penetration Force And Cannula Sliding Profiles Of Different Pen Needles: The PICASSO Study [Erratum]
par: Leonardi L, et autres
Publié: (2019) -
Automated cyclers used in peritoneal dialysis: technical aspects for the clinician
par: Chaudhry RI, et autres
Publié: (2015) -
Automated data-driven mass spectrometry for improved analysis of lipids with dual dissociation techniques
par: Seul Kee Byeon, et autres
Publié: (2021) -
Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy
par: Kasper ME, et autres
Publié: (2015)