First Integrals of Shear-Free Fluids and Complexity
A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics&g...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05483e2da13c419c8c1751dda5819836 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:05483e2da13c419c8c1751dda5819836 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:05483e2da13c419c8c1751dda58198362021-11-25T17:30:46ZFirst Integrals of Shear-Free Fluids and Complexity10.3390/e231115391099-4300https://doaj.org/article/05483e2da13c419c8c1751dda58198362021-11-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1539https://doaj.org/toc/1099-4300A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>y</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac><msup><mfenced separators="" open="(" close=")"><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced><mrow><mo>−</mo><mn>15</mn><mo>/</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions.Sfundo C. GumedeKeshlan S. GovinderSunil D. MaharajMDPI AGarticleshear-free fluidsEinstein field equationsfirst integralsScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1539, p 1539 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
shear-free fluids Einstein field equations first integrals Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
shear-free fluids Einstein field equations first integrals Science Q Astrophysics QB460-466 Physics QC1-999 Sfundo C. Gumede Keshlan S. Govinder Sunil D. Maharaj First Integrals of Shear-Free Fluids and Complexity |
description |
A single master equation governs the behaviour of shear-free neutral perfect fluid distributions arising in gravity theories. In this paper, we study the integrability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>y</mi><mn>2</mn></msup><mo>,</mo></mrow></semantics></math></inline-formula> find new solutions, and generate a new first integral. The first integral is subject to an integrability condition which is an integral equation which restricts the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> We find that the integrability condition can be written as a third order differential equation whose solution can be expressed in terms of elementary functions and elliptic integrals. The solution of the integrability condition is generally given parametrically. A particular form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac><msup><mfenced separators="" open="(" close=")"><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced><mrow><mo>−</mo><mn>15</mn><mo>/</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> which corresponds to repeated roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and this may be extendable to general matter distributions. |
format |
article |
author |
Sfundo C. Gumede Keshlan S. Govinder Sunil D. Maharaj |
author_facet |
Sfundo C. Gumede Keshlan S. Govinder Sunil D. Maharaj |
author_sort |
Sfundo C. Gumede |
title |
First Integrals of Shear-Free Fluids and Complexity |
title_short |
First Integrals of Shear-Free Fluids and Complexity |
title_full |
First Integrals of Shear-Free Fluids and Complexity |
title_fullStr |
First Integrals of Shear-Free Fluids and Complexity |
title_full_unstemmed |
First Integrals of Shear-Free Fluids and Complexity |
title_sort |
first integrals of shear-free fluids and complexity |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/05483e2da13c419c8c1751dda5819836 |
work_keys_str_mv |
AT sfundocgumede firstintegralsofshearfreefluidsandcomplexity AT keshlansgovinder firstintegralsofshearfreefluidsandcomplexity AT sunildmaharaj firstintegralsofshearfreefluidsandcomplexity |
_version_ |
1718412266008739840 |