Direct growth of hexagonal boron nitride on non-metallic substrates and its heterostructures with graphene
Summary: Hexagonal boron nitride (h-BN) and its heterostructures with graphene are widely investigated van der Waals (vdW) quantum materials for electronics, photonics, sensing, and energy storage/transduction. However, their metal catalyst-based growth and transfer-based heterostructure assembly ap...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05487cfbdb714e5b835c31f555b3aa1f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Summary: Hexagonal boron nitride (h-BN) and its heterostructures with graphene are widely investigated van der Waals (vdW) quantum materials for electronics, photonics, sensing, and energy storage/transduction. However, their metal catalyst-based growth and transfer-based heterostructure assembly approaches present impediments to obtaining high-quality and wafer-scale quantum material. Here, we have presented our perspective on the synthetic strategies that involve direct nucleation of h-BN on various dielectric substrates and its heterostructures with graphene. Mechanistic understanding of direct growth of h-BN via bottom-up approaches such as (a) the chemical-interaction guided nucleation on silicon-based dielectrics, (b) surface nitridation and N+ sputtering of h-BN target on sapphire, and (c) epitaxial growth of h-BN on sapphire, among others, are reviewed. Several design methodologies are presented for the direct growth of vertical and lateral vdW heterostructures of h-BN and graphene. These complex 2D heterostructures exhibit various physical phenomena and could potentially have a range of practical applications. |
---|