Terahertz pulse shaping using diffractive surfaces
Diffractive networks have recently been discussed as an all-optical analogue for performing neural network operations. The authors present a method using deep learning-designed 3D-printed diffractive surfaces to engineer temporal waveforms and perform pulse shaping in the terahertz regime.
Guardado en:
Autores principales: | Muhammed Veli, Deniz Mengu, Nezih T. Yardimci, Yi Luo, Jingxi Li, Yair Rivenson, Mona Jarrahi, Aydogan Ozcan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0555608390ed4c5b91aca33500427504 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity
por: Nezih Tolga Yardimci, et al.
Publicado: (2017) -
Wavelength conversion through plasmon-coupled surface states
por: Deniz Turan, et al.
Publicado: (2021) -
Author Correction: Wavelength conversion through plasmon-coupled surface states
por: Deniz Turan, et al.
Publicado: (2021) -
Resolution enhancement in scanning electron microscopy using deep learning
por: Kevin de Haan, et al.
Publicado: (2019) -
Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide
por: Flávio H. Feres, et al.
Publicado: (2021)