Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit
Background: Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate progression, but these require specialized biplanar imaging equipment and labor-in...
Guardado en:
Autores principales: | Hongfei Wang, Teng Zhang, Kenneth Man-Chee Cheung, Graham Ka-Hon Shea |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05560692eab0409ca7a6a2c547cac91d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Idiopathic scoliosis: general characteristics and analysis of etiological theories (literature review)
por: E. L. Strokova, et al.
Publicado: (2021) - Scoliosis and spinal disorders
-
Six-Month Results on Treatment Adherence, Physical Activity, Spinal Appearance, Spinal Deformity, and Quality of Life in an Ongoing Randomised Trial on Conservative Treatment for Adolescent Idiopathic Scoliosis (CONTRAIS)
por: Marlene Dufvenberg, et al.
Publicado: (2021) -
A Comparative Study of Sagittal Spinal-Pelvic Parameters Between Patients with Adolescent Idiopathic Scoliosis and Healthy Controls
por: Zhang,Cong, et al.
Publicado: (2020) -
Scoliosis
Publicado: (2015)