Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population

William K Wedin,1 Lizmer Diaz-Gimenez,1 Antonio J Convit1,21Department of Psychiatry, NYU School of Medicine, New York, NY, USA; 2Nathan Kline Institute, Orangeburg, NY, USAObjective: The aim of this study was to describe the minimum number of anthropometric measures that will optimally predict insu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wedin WK, Diaz-Gimenez L, Convit AJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/055b0123283d41309d9efc9d2660c35d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:055b0123283d41309d9efc9d2660c35d
record_format dspace
spelling oai:doaj.org-article:055b0123283d41309d9efc9d2660c35d2021-12-02T01:31:26ZPrediction of insulin resistance with anthropometric measures: lessons from a large adolescent population1178-7007https://doaj.org/article/055b0123283d41309d9efc9d2660c35d2012-07-01T00:00:00Zhttp://www.dovepress.com/prediction-of-insulin-resistance-with-anthropometric-measures-lessons--a10476https://doaj.org/toc/1178-7007William K Wedin,1 Lizmer Diaz-Gimenez,1 Antonio J Convit1,21Department of Psychiatry, NYU School of Medicine, New York, NY, USA; 2Nathan Kline Institute, Orangeburg, NY, USAObjective: The aim of this study was to describe the minimum number of anthropometric measures that will optimally predict insulin resistance (IR) and to characterize the utility of these measures among obese and nonobese adolescents.Research design and methods: Six anthropometric measures (selected from three categories: central adiposity, weight, and body composition) were measured from 1298 adolescents attending two New York City public high schools. Body composition was determined by bioelectric impedance analysis (BIA). The homeostatic model assessment of IR (HOMA-IR), based on fasting glucose and insulin concentrations, was used to estimate IR. Stepwise linear regression analyses were performed to predict HOMA-IR based on the six selected measures, while controlling for age.Results: The stepwise regression retained both waist circumference (WC) and percentage of body fat (BF%). Notably, BMI was not retained. WC was a stronger predictor of HOMA-IR than BMI was. A regression model using solely WC performed best among the obese II group, while a model using solely BF% performed best among the lean group. Receiver operator characteristic curves showed the WC and BF% model to be more sensitive in detecting IR than BMI, but with less specificity.Conclusion: WC combined with BF% was the best predictor of HOMA-IR. This finding can be attributed partly to the ability of BF% to model HOMA-IR among leaner participants and to the ability of WC to model HOMA-IR among participants who are more obese. BMI was comparatively weak in predicting IR, suggesting that assessments that are more comprehensive and include body composition analysis could increase detection of IR during adolescence, especially among those who are lean, yet insulin-resistant.Keywords: BMI, bioelectrical impedance analysis, waist circumference, HOMA, insulin resistance, type 2 diabetesWedin WKDiaz-Gimenez LConvit AJDove Medical PressarticleSpecialties of internal medicineRC581-951ENDiabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Vol 2012, Iss default, Pp 219-225 (2012)
institution DOAJ
collection DOAJ
language EN
topic Specialties of internal medicine
RC581-951
spellingShingle Specialties of internal medicine
RC581-951
Wedin WK
Diaz-Gimenez L
Convit AJ
Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
description William K Wedin,1 Lizmer Diaz-Gimenez,1 Antonio J Convit1,21Department of Psychiatry, NYU School of Medicine, New York, NY, USA; 2Nathan Kline Institute, Orangeburg, NY, USAObjective: The aim of this study was to describe the minimum number of anthropometric measures that will optimally predict insulin resistance (IR) and to characterize the utility of these measures among obese and nonobese adolescents.Research design and methods: Six anthropometric measures (selected from three categories: central adiposity, weight, and body composition) were measured from 1298 adolescents attending two New York City public high schools. Body composition was determined by bioelectric impedance analysis (BIA). The homeostatic model assessment of IR (HOMA-IR), based on fasting glucose and insulin concentrations, was used to estimate IR. Stepwise linear regression analyses were performed to predict HOMA-IR based on the six selected measures, while controlling for age.Results: The stepwise regression retained both waist circumference (WC) and percentage of body fat (BF%). Notably, BMI was not retained. WC was a stronger predictor of HOMA-IR than BMI was. A regression model using solely WC performed best among the obese II group, while a model using solely BF% performed best among the lean group. Receiver operator characteristic curves showed the WC and BF% model to be more sensitive in detecting IR than BMI, but with less specificity.Conclusion: WC combined with BF% was the best predictor of HOMA-IR. This finding can be attributed partly to the ability of BF% to model HOMA-IR among leaner participants and to the ability of WC to model HOMA-IR among participants who are more obese. BMI was comparatively weak in predicting IR, suggesting that assessments that are more comprehensive and include body composition analysis could increase detection of IR during adolescence, especially among those who are lean, yet insulin-resistant.Keywords: BMI, bioelectrical impedance analysis, waist circumference, HOMA, insulin resistance, type 2 diabetes
format article
author Wedin WK
Diaz-Gimenez L
Convit AJ
author_facet Wedin WK
Diaz-Gimenez L
Convit AJ
author_sort Wedin WK
title Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
title_short Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
title_full Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
title_fullStr Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
title_full_unstemmed Prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
title_sort prediction of insulin resistance with anthropometric measures: lessons from a large adolescent population
publisher Dove Medical Press
publishDate 2012
url https://doaj.org/article/055b0123283d41309d9efc9d2660c35d
work_keys_str_mv AT wedinwk predictionofinsulinresistancewithanthropometricmeasureslessonsfromalargeadolescentpopulation
AT diazgimenezl predictionofinsulinresistancewithanthropometricmeasureslessonsfromalargeadolescentpopulation
AT convitaj predictionofinsulinresistancewithanthropometricmeasureslessonsfromalargeadolescentpopulation
_version_ 1718402996201586688