Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging

Evaluation of tumor response to antivascular endothelial growth factor therapies in metastatic colorectal cancer (mCRC) is limited because morphological change in tumor may occur earlier or be more critical than tumor size change. Here, the authors present an analysis utilizing a deep learning netwo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lin Lu, Laurent Dercle, Binsheng Zhao, Lawrence H. Schwartz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/05663aaff3704c2994241e2f448faf34
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Evaluation of tumor response to antivascular endothelial growth factor therapies in metastatic colorectal cancer (mCRC) is limited because morphological change in tumor may occur earlier or be more critical than tumor size change. Here, the authors present an analysis utilizing a deep learning network to characterize tumor morphological change as well as tumor size changes for response assessment in mCRC patients.