Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
Evaluation of tumor response to antivascular endothelial growth factor therapies in metastatic colorectal cancer (mCRC) is limited because morphological change in tumor may occur earlier or be more critical than tumor size change. Here, the authors present an analysis utilizing a deep learning netwo...
Guardado en:
Autores principales: | Lin Lu, Laurent Dercle, Binsheng Zhao, Lawrence H. Schwartz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05663aaff3704c2994241e2f448faf34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms
por: Seong Ji Choi, et al.
Publicado: (2021) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
Medical imaging deep learning with differential privacy
por: Alexander Ziller, et al.
Publicado: (2021) -
Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data
por: Yiqiao Liu, et al.
Publicado: (2021) -
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images
por: Gang Yu, et al.
Publicado: (2021)