Virus-like particles with FLAG-tagged envelope protein as a tetravalent dengue vaccine candidate
Abstract The global incidence of dengue, which is caused by dengue virus (DENV) infection, has grown dramatically in recent decades and secondary infection with heterologous serotype of the virus may cause severe symptoms. Efficacious dengue vaccines should be able to provide long-lasting immunity a...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0567ac1e974b4525bd4bf3c91772a513 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The global incidence of dengue, which is caused by dengue virus (DENV) infection, has grown dramatically in recent decades and secondary infection with heterologous serotype of the virus may cause severe symptoms. Efficacious dengue vaccines should be able to provide long-lasting immunity against all four DENV serotypes simultaneously. In this study, we constructed a novel vaccine platform based on tetravalent dengue virus-like particles (DENV-LPs) in which envelope (E) protein carried a FLAG tag sequence at the position located not only in the exterior loop on the protruding domain but outside of dimerization interface of the protein. We demonstrated an effective strategy to produce the DENV-LPs by transient transfection with expression plasmids for pre-membrane and E proteins of DENV-1 to DENV-4 in mammalian cells and to concentrate and purify them with one-step affinity chromatography. Characteristic features of VLPs such as particle size, shape and density were comparable to flavivirus-like particles reported. The neutralizing activity against all four DENV serotypes was successfully induced by immunization with the purified tetravalent VLPs in mice. Simple, one-step purification systems for VLP vaccine platforms using epitope-tagging strategy should be advantageous for vaccine development not only for dengue but for emerging pandemics in the future. |
---|