Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7

Abstract Green synthesis of zinc oxide nanoparticles (ZnO NPs) through simple, rapid, eco-friendly and an economical method with a new haloalkaliphilic bacterial strain (Alkalibacillus sp. W7) was investigated. Response surface methodology (RSM) based on Box-Behnken design (BP) was used to optimize...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hend M. H. Al-Kordy, Soraya A. Sabry, Mona E. M. Mabrouk
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/05753d42fcfc4d70b32d5461b56dd6cf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:05753d42fcfc4d70b32d5461b56dd6cf
record_format dspace
spelling oai:doaj.org-article:05753d42fcfc4d70b32d5461b56dd6cf2021-12-02T15:00:59ZStatistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W710.1038/s41598-021-90408-y2045-2322https://doaj.org/article/05753d42fcfc4d70b32d5461b56dd6cf2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90408-yhttps://doaj.org/toc/2045-2322Abstract Green synthesis of zinc oxide nanoparticles (ZnO NPs) through simple, rapid, eco-friendly and an economical method with a new haloalkaliphilic bacterial strain (Alkalibacillus sp. W7) was investigated. Response surface methodology (RSM) based on Box-Behnken design (BP) was used to optimize the process parameters (ZnSO4.7H2O concentration, temperature, and pH) affecting the size of Alkalibacillus-ZnO NPs (Alk-ZnO NPs). The synthesized nanoparticles were characterized using UV–visible spectrum, X-ray diffraction (XRD), Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM–EDX), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Zeta potential. The UV–Vis spectrum of ZnO NPs revealed a characteristic surface plasmon resonance (SPR) peak at 310 nm. XRD pattern confirmed the hexagonal wurtzite structure of highly pure with a crystallite size 19.5 nm. TEM proved the quasi-spherical shape nanoparticles of size ranging from 1 to 30 nm. SEM–EDX showed spherical shaped and displayed a maximum elemental distribution of zinc and oxygen. FTIR provided an evidence that the biofunctional groups of metabolites in Alkalibacillus sp.W7 supernatant acted as viable reducing, capping and stabilizing agents.Hend M. H. Al-KordySoraya A. SabryMona E. M. MabroukNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Hend M. H. Al-Kordy
Soraya A. Sabry
Mona E. M. Mabrouk
Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7
description Abstract Green synthesis of zinc oxide nanoparticles (ZnO NPs) through simple, rapid, eco-friendly and an economical method with a new haloalkaliphilic bacterial strain (Alkalibacillus sp. W7) was investigated. Response surface methodology (RSM) based on Box-Behnken design (BP) was used to optimize the process parameters (ZnSO4.7H2O concentration, temperature, and pH) affecting the size of Alkalibacillus-ZnO NPs (Alk-ZnO NPs). The synthesized nanoparticles were characterized using UV–visible spectrum, X-ray diffraction (XRD), Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM–EDX), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and Zeta potential. The UV–Vis spectrum of ZnO NPs revealed a characteristic surface plasmon resonance (SPR) peak at 310 nm. XRD pattern confirmed the hexagonal wurtzite structure of highly pure with a crystallite size 19.5 nm. TEM proved the quasi-spherical shape nanoparticles of size ranging from 1 to 30 nm. SEM–EDX showed spherical shaped and displayed a maximum elemental distribution of zinc and oxygen. FTIR provided an evidence that the biofunctional groups of metabolites in Alkalibacillus sp.W7 supernatant acted as viable reducing, capping and stabilizing agents.
format article
author Hend M. H. Al-Kordy
Soraya A. Sabry
Mona E. M. Mabrouk
author_facet Hend M. H. Al-Kordy
Soraya A. Sabry
Mona E. M. Mabrouk
author_sort Hend M. H. Al-Kordy
title Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7
title_short Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7
title_full Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7
title_fullStr Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7
title_full_unstemmed Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp.W7
title_sort statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic alkalibacillus sp.w7
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/05753d42fcfc4d70b32d5461b56dd6cf
work_keys_str_mv AT hendmhalkordy statisticaloptimizationofexperimentalparametersforextracellularsynthesisofzincoxidenanoparticlesbyanovelhaloalaliphilicalkalibacillusspw7
AT sorayaasabry statisticaloptimizationofexperimentalparametersforextracellularsynthesisofzincoxidenanoparticlesbyanovelhaloalaliphilicalkalibacillusspw7
AT monaemmabrouk statisticaloptimizationofexperimentalparametersforextracellularsynthesisofzincoxidenanoparticlesbyanovelhaloalaliphilicalkalibacillusspw7
_version_ 1718389118907449344