Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia
Abstract Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50–60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0585c9174d894b83a10e9c9210ba9f53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0585c9174d894b83a10e9c9210ba9f53 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0585c9174d894b83a10e9c9210ba9f532021-12-02T10:44:22ZLong non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia10.1038/s41598-021-82509-52045-2322https://doaj.org/article/0585c9174d894b83a10e9c9210ba9f532021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82509-5https://doaj.org/toc/2045-2322Abstract Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50–60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.Mattias HofmansTim LammensBarbara DepreterYing WuMiriam ErlacherAurélie CayeHélène CavéChristian FlothoValerie de HaasCharlotte M. NiemeyerJan StaryFilip Van NieuwerburghDieter DeforceWouter Van LoockePieter Van VlierbergheJan PhilippéBarbara De MoerlooseNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Mattias Hofmans Tim Lammens Barbara Depreter Ying Wu Miriam Erlacher Aurélie Caye Hélène Cavé Christian Flotho Valerie de Haas Charlotte M. Niemeyer Jan Stary Filip Van Nieuwerburgh Dieter Deforce Wouter Van Loocke Pieter Van Vlierberghe Jan Philippé Barbara De Moerloose Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia |
description |
Abstract Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50–60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy. |
format |
article |
author |
Mattias Hofmans Tim Lammens Barbara Depreter Ying Wu Miriam Erlacher Aurélie Caye Hélène Cavé Christian Flotho Valerie de Haas Charlotte M. Niemeyer Jan Stary Filip Van Nieuwerburgh Dieter Deforce Wouter Van Loocke Pieter Van Vlierberghe Jan Philippé Barbara De Moerloose |
author_facet |
Mattias Hofmans Tim Lammens Barbara Depreter Ying Wu Miriam Erlacher Aurélie Caye Hélène Cavé Christian Flotho Valerie de Haas Charlotte M. Niemeyer Jan Stary Filip Van Nieuwerburgh Dieter Deforce Wouter Van Loocke Pieter Van Vlierberghe Jan Philippé Barbara De Moerloose |
author_sort |
Mattias Hofmans |
title |
Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia |
title_short |
Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia |
title_full |
Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia |
title_fullStr |
Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia |
title_full_unstemmed |
Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia |
title_sort |
long non-coding rnas as novel therapeutic targets in juvenile myelomonocytic leukemia |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0585c9174d894b83a10e9c9210ba9f53 |
work_keys_str_mv |
AT mattiashofmans longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT timlammens longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT barbaradepreter longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT yingwu longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT miriamerlacher longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT aureliecaye longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT helenecave longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT christianflotho longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT valeriedehaas longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT charlottemniemeyer longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT janstary longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT filipvannieuwerburgh longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT dieterdeforce longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT woutervanloocke longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT pietervanvlierberghe longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT janphilippe longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia AT barbarademoerloose longnoncodingrnasasnoveltherapeutictargetsinjuvenilemyelomonocyticleukemia |
_version_ |
1718396747404804096 |