Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence

Maloca et al. implement convolutional neural network (CNN) to automatically segment OCT images obtained from cynomolgus monkeys. The results are compared to annotations generated by human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visuali...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter M. Maloca, Philipp L. Müller, Aaron Y. Lee, Adnan Tufail, Konstantinos Balaskas, Stephanie Niklaus, Pascal Kaiser, Susanne Suter, Javier Zarranz-Ventura, Catherine Egan, Hendrik P. N. Scholl, Tobias K. Schnitzer, Thomas Singer, Pascal W. Hasler, Nora Denk
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/05979fb5418e464a9cf6a4f9447c2d75
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Maloca et al. implement convolutional neural network (CNN) to automatically segment OCT images obtained from cynomolgus monkeys. The results are compared to annotations generated by human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized.