Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence
Maloca et al. implement convolutional neural network (CNN) to automatically segment OCT images obtained from cynomolgus monkeys. The results are compared to annotations generated by human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visuali...
Guardado en:
Autores principales: | Peter M. Maloca, Philipp L. Müller, Aaron Y. Lee, Adnan Tufail, Konstantinos Balaskas, Stephanie Niklaus, Pascal Kaiser, Susanne Suter, Javier Zarranz-Ventura, Catherine Egan, Hendrik P. N. Scholl, Tobias K. Schnitzer, Thomas Singer, Pascal W. Hasler, Nora Denk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05979fb5418e464a9cf6a4f9447c2d75 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields
por: Ping Lü, et al.
Publicado: (2017) -
Experimental Testing on an Air-Cooled Condenser Motor, Gearbox and Fan
por: van Rensburg C.J., et al.
Publicado: (2021) -
Virtual sensing for gearbox condition monitoring based on kernel factor analysis
por: Jin-Jiang Wang, et al.
Publicado: (2017) -
Dynamic Modeling and Simulation of Double-Planetary Gearbox Based on Bond Graph
por: Wuzhong Tan, et al.
Publicado: (2021) -
Preventive maintenance model analysis on wind-turbine gearbox under stochastic disturbance
por: Li Chen, et al.
Publicado: (2022)