A Deep Gravity model for mobility flows generation

The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. Here, the authors use deep neural networks to discover non-linear relationships between geographical variables and mobil...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Filippo Simini, Gianni Barlacchi, Massimilano Luca, Luca Pappalardo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/059d39bef08745cab26256153f00f062
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:059d39bef08745cab26256153f00f062
record_format dspace
spelling oai:doaj.org-article:059d39bef08745cab26256153f00f0622021-11-14T12:34:21ZA Deep Gravity model for mobility flows generation10.1038/s41467-021-26752-42041-1723https://doaj.org/article/059d39bef08745cab26256153f00f0622021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26752-4https://doaj.org/toc/2041-1723The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. Here, the authors use deep neural networks to discover non-linear relationships between geographical variables and mobility flows.Filippo SiminiGianni BarlacchiMassimilano LucaLuca PappalardoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Filippo Simini
Gianni Barlacchi
Massimilano Luca
Luca Pappalardo
A Deep Gravity model for mobility flows generation
description The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. Here, the authors use deep neural networks to discover non-linear relationships between geographical variables and mobility flows.
format article
author Filippo Simini
Gianni Barlacchi
Massimilano Luca
Luca Pappalardo
author_facet Filippo Simini
Gianni Barlacchi
Massimilano Luca
Luca Pappalardo
author_sort Filippo Simini
title A Deep Gravity model for mobility flows generation
title_short A Deep Gravity model for mobility flows generation
title_full A Deep Gravity model for mobility flows generation
title_fullStr A Deep Gravity model for mobility flows generation
title_full_unstemmed A Deep Gravity model for mobility flows generation
title_sort deep gravity model for mobility flows generation
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/059d39bef08745cab26256153f00f062
work_keys_str_mv AT filipposimini adeepgravitymodelformobilityflowsgeneration
AT giannibarlacchi adeepgravitymodelformobilityflowsgeneration
AT massimilanoluca adeepgravitymodelformobilityflowsgeneration
AT lucapappalardo adeepgravitymodelformobilityflowsgeneration
AT filipposimini deepgravitymodelformobilityflowsgeneration
AT giannibarlacchi deepgravitymodelformobilityflowsgeneration
AT massimilanoluca deepgravitymodelformobilityflowsgeneration
AT lucapappalardo deepgravitymodelformobilityflowsgeneration
_version_ 1718429087084576768