A Deep Gravity model for mobility flows generation
The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. Here, the authors use deep neural networks to discover non-linear relationships between geographical variables and mobil...
Guardado en:
Autores principales: | Filippo Simini, Gianni Barlacchi, Massimilano Luca, Luca Pappalardo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/059d39bef08745cab26256153f00f062 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Social media usage reveals recovery of small businesses after natural hazard events
por: Robert Eyre, et al.
Publicado: (2020) -
Reconstructing the sediment concentration of a giant submarine gravity flow
por: Christopher John Stevenson, et al.
Publicado: (2018) -
Generation of gravity waves from thermal tides in the Venus atmosphere
por: Norihiko Sugimoto, et al.
Publicado: (2021) -
Reproducing scientists’ mobility: a data-driven model
por: Giacomo Vaccario, et al.
Publicado: (2021) -
Gravity-driven hydromagnetic flow of couple stress hybrid nanofluid with homogenous-heterogeneous reactions
por: Muhammad Waseem, et al.
Publicado: (2021)