Light-stimulus intensity modulates startle reflex habituation in larval zebrafish
Abstract The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatr...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05aea555c2c747efa45fed25eee0f8e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:05aea555c2c747efa45fed25eee0f8e9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:05aea555c2c747efa45fed25eee0f8e92021-11-21T12:18:14ZLight-stimulus intensity modulates startle reflex habituation in larval zebrafish10.1038/s41598-021-00535-92045-2322https://doaj.org/article/05aea555c2c747efa45fed25eee0f8e92021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00535-9https://doaj.org/toc/2045-2322Abstract The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research.Carolina BeppiGiorgio BeringerDominik StraumannStefan Yu BögliNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Carolina Beppi Giorgio Beringer Dominik Straumann Stefan Yu Bögli Light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
description |
Abstract The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research. |
format |
article |
author |
Carolina Beppi Giorgio Beringer Dominik Straumann Stefan Yu Bögli |
author_facet |
Carolina Beppi Giorgio Beringer Dominik Straumann Stefan Yu Bögli |
author_sort |
Carolina Beppi |
title |
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
title_short |
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
title_full |
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
title_fullStr |
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
title_full_unstemmed |
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
title_sort |
light-stimulus intensity modulates startle reflex habituation in larval zebrafish |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/05aea555c2c747efa45fed25eee0f8e9 |
work_keys_str_mv |
AT carolinabeppi lightstimulusintensitymodulatesstartlereflexhabituationinlarvalzebrafish AT giorgioberinger lightstimulusintensitymodulatesstartlereflexhabituationinlarvalzebrafish AT dominikstraumann lightstimulusintensitymodulatesstartlereflexhabituationinlarvalzebrafish AT stefanyubogli lightstimulusintensitymodulatesstartlereflexhabituationinlarvalzebrafish |
_version_ |
1718419044647829504 |