Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility

The widespread use of energy dissipation systems has led researchers to investigate the optimal mechanical properties of these systems for improving the seismic performance of a structure with the installation of such devices. So far, considerable researches have been conducted on optimum seismic de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Behnoud Ganjavi
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2020
Materias:
Acceso en línea:https://doaj.org/article/05aef65794dd4c229b13e0b8cbde10f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:05aef65794dd4c229b13e0b8cbde10f7
record_format dspace
spelling oai:doaj.org-article:05aef65794dd4c229b13e0b8cbde10f72021-11-08T15:53:54ZOptimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility2476-39772538-261610.22065/jsce.2018.139987.1604https://doaj.org/article/05aef65794dd4c229b13e0b8cbde10f72020-07-01T00:00:00Zhttps://www.jsce.ir/article_80579_d5eb5616ee2230f41474f0b7a74eab8b.pdfhttps://doaj.org/toc/2476-3977https://doaj.org/toc/2538-2616The widespread use of energy dissipation systems has led researchers to investigate the optimal mechanical properties of these systems for improving the seismic performance of a structure with the installation of such devices. So far, considerable researches have been conducted on optimum seismic design of fixed-base systems with passive dampers. On the other hand, recent studies have shown that effect of soil-structure interaction (SSI) can have remarkable effects on optimum seismic loading patterns of structures in both elastic and inelastic states. In these investigations, several new optimization algorithms were proposed for optimum seismic design of buildings considering soil-structure interaction effects. However, very rarer optimization studies have performed on soil-structures systems with dampers. In this paper, a new optimization algorithm based on uniform damage distribution of equivalent shear building model considering soil-structure interaction effect is developed. To this end, shear buildings models with hysteretic dampers located on flexible base soil are optimized under 16 far-fault earthquake ground motions without pulse, and the effect of key soil-structure interaction parameters on optimum response is investigated. Results of this study indicate that using proposed optimization algorithm for soil-structure systems with hysteretic dampers to achieve optimum distribution of dampers will lead to significant improvement of the seismic performance of the primary structure. In addition, it was concluded that the soil-structure key parameters such as dimensionless frequency and structural slenderness ratio can significantly affect the optimum load patterns such that increasing SSI effect will lead to increasing seismic load on base and top of the structure compared to the fixed-base systems. This can be attributed to the flexibility and higher modes effect of soil-structure systems when compared to the corresponding fixed-base system.Behnoud GanjaviIranian Society of Structrual Engineering (ISSE)articlehysteretic damperoptimum designsoil-structure interactioninelastic inter-story driftseismic load patternBridge engineeringTG1-470Building constructionTH1-9745FAJournal of Structural and Construction Engineering, Vol 7, Iss شماره ویژه 2 (2020)
institution DOAJ
collection DOAJ
language FA
topic hysteretic damper
optimum design
soil-structure interaction
inelastic inter-story drift
seismic load pattern
Bridge engineering
TG1-470
Building construction
TH1-9745
spellingShingle hysteretic damper
optimum design
soil-structure interaction
inelastic inter-story drift
seismic load pattern
Bridge engineering
TG1-470
Building construction
TH1-9745
Behnoud Ganjavi
Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility
description The widespread use of energy dissipation systems has led researchers to investigate the optimal mechanical properties of these systems for improving the seismic performance of a structure with the installation of such devices. So far, considerable researches have been conducted on optimum seismic design of fixed-base systems with passive dampers. On the other hand, recent studies have shown that effect of soil-structure interaction (SSI) can have remarkable effects on optimum seismic loading patterns of structures in both elastic and inelastic states. In these investigations, several new optimization algorithms were proposed for optimum seismic design of buildings considering soil-structure interaction effects. However, very rarer optimization studies have performed on soil-structures systems with dampers. In this paper, a new optimization algorithm based on uniform damage distribution of equivalent shear building model considering soil-structure interaction effect is developed. To this end, shear buildings models with hysteretic dampers located on flexible base soil are optimized under 16 far-fault earthquake ground motions without pulse, and the effect of key soil-structure interaction parameters on optimum response is investigated. Results of this study indicate that using proposed optimization algorithm for soil-structure systems with hysteretic dampers to achieve optimum distribution of dampers will lead to significant improvement of the seismic performance of the primary structure. In addition, it was concluded that the soil-structure key parameters such as dimensionless frequency and structural slenderness ratio can significantly affect the optimum load patterns such that increasing SSI effect will lead to increasing seismic load on base and top of the structure compared to the fixed-base systems. This can be attributed to the flexibility and higher modes effect of soil-structure systems when compared to the corresponding fixed-base system.
format article
author Behnoud Ganjavi
author_facet Behnoud Ganjavi
author_sort Behnoud Ganjavi
title Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility
title_short Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility
title_full Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility
title_fullStr Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility
title_full_unstemmed Optimum Seismic Design of Structures with Hysteretic Damper Considering Soil Flexibility
title_sort optimum seismic design of structures with hysteretic damper considering soil flexibility
publisher Iranian Society of Structrual Engineering (ISSE)
publishDate 2020
url https://doaj.org/article/05aef65794dd4c229b13e0b8cbde10f7
work_keys_str_mv AT behnoudganjavi optimumseismicdesignofstructureswithhystereticdamperconsideringsoilflexibility
_version_ 1718441539704717312