Nano silica diaphragm in-fiber cavity for gas pressure measurement

Abstract We demonstrate an ultrahigh-sensitivity gas pressure sensor based on the Fabry-Perot interferometer employing a fiber-tip diaphragm-sealed cavity. The cavity is comprised of a silica capillary and ultrathin silica diaphragm with a thickness of 170 nm, with represents the thinnest silica dia...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shen Liu, Yiping Wang, Changrui Liao, Ying Wang, Jun He, Cailing Fu, Kaiming Yang, Zhiyong Bai, Feng Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/05c7285d4f634bd6b2b369ea1221af36
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:05c7285d4f634bd6b2b369ea1221af36
record_format dspace
spelling oai:doaj.org-article:05c7285d4f634bd6b2b369ea1221af362021-12-02T11:52:21ZNano silica diaphragm in-fiber cavity for gas pressure measurement10.1038/s41598-017-00931-02045-2322https://doaj.org/article/05c7285d4f634bd6b2b369ea1221af362017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00931-0https://doaj.org/toc/2045-2322Abstract We demonstrate an ultrahigh-sensitivity gas pressure sensor based on the Fabry-Perot interferometer employing a fiber-tip diaphragm-sealed cavity. The cavity is comprised of a silica capillary and ultrathin silica diaphragm with a thickness of 170 nm, with represents the thinnest silica diaphragm fabricated thus far by an electrical arc discharge technique. The resulting Fabry-Perot interferometer-based gas pressure sensor demonstrates a gas pressure sensitivity of about 12.22 nm/kPa, which is more than two orders of magnitude greater than that of a similarly configured fiber-tip air bubble sensor. Moreover, our gas pressure sensor has a low temperature cross-sensitivity of about 106 Pa/°C, and the sensor functions well up to a temperature of about 1000 °C. As such, the sensor can potentially be employed in high-temperature environments.Shen LiuYiping WangChangrui LiaoYing WangJun HeCailing FuKaiming YangZhiyong BaiFeng ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shen Liu
Yiping Wang
Changrui Liao
Ying Wang
Jun He
Cailing Fu
Kaiming Yang
Zhiyong Bai
Feng Zhang
Nano silica diaphragm in-fiber cavity for gas pressure measurement
description Abstract We demonstrate an ultrahigh-sensitivity gas pressure sensor based on the Fabry-Perot interferometer employing a fiber-tip diaphragm-sealed cavity. The cavity is comprised of a silica capillary and ultrathin silica diaphragm with a thickness of 170 nm, with represents the thinnest silica diaphragm fabricated thus far by an electrical arc discharge technique. The resulting Fabry-Perot interferometer-based gas pressure sensor demonstrates a gas pressure sensitivity of about 12.22 nm/kPa, which is more than two orders of magnitude greater than that of a similarly configured fiber-tip air bubble sensor. Moreover, our gas pressure sensor has a low temperature cross-sensitivity of about 106 Pa/°C, and the sensor functions well up to a temperature of about 1000 °C. As such, the sensor can potentially be employed in high-temperature environments.
format article
author Shen Liu
Yiping Wang
Changrui Liao
Ying Wang
Jun He
Cailing Fu
Kaiming Yang
Zhiyong Bai
Feng Zhang
author_facet Shen Liu
Yiping Wang
Changrui Liao
Ying Wang
Jun He
Cailing Fu
Kaiming Yang
Zhiyong Bai
Feng Zhang
author_sort Shen Liu
title Nano silica diaphragm in-fiber cavity for gas pressure measurement
title_short Nano silica diaphragm in-fiber cavity for gas pressure measurement
title_full Nano silica diaphragm in-fiber cavity for gas pressure measurement
title_fullStr Nano silica diaphragm in-fiber cavity for gas pressure measurement
title_full_unstemmed Nano silica diaphragm in-fiber cavity for gas pressure measurement
title_sort nano silica diaphragm in-fiber cavity for gas pressure measurement
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/05c7285d4f634bd6b2b369ea1221af36
work_keys_str_mv AT shenliu nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT yipingwang nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT changruiliao nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT yingwang nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT junhe nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT cailingfu nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT kaimingyang nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT zhiyongbai nanosilicadiaphragminfibercavityforgaspressuremeasurement
AT fengzhang nanosilicadiaphragminfibercavityforgaspressuremeasurement
_version_ 1718395026054053888