Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging

Abstract Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating ef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pedro A. Gómez, Matteo Cencini, Mohammad Golbabaee, Rolf F. Schulte, Carolin Pirkl, Izabela Horvath, Giada Fallo, Luca Peretti, Michela Tosetti, Bjoern H. Menze, Guido Buonincontri
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/05d2f38168cb46aeb7ef4f218b5fd783
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:05d2f38168cb46aeb7ef4f218b5fd783
record_format dspace
spelling oai:doaj.org-article:05d2f38168cb46aeb7ef4f218b5fd7832021-12-02T18:50:49ZRapid three-dimensional multiparametric MRI with quantitative transient-state imaging10.1038/s41598-020-70789-22045-2322https://doaj.org/article/05d2f38168cb46aeb7ef4f218b5fd7832020-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-70789-2https://doaj.org/toc/2045-2322Abstract Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5 T and 3 T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2 and 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 min. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.Pedro A. GómezMatteo CenciniMohammad GolbabaeeRolf F. SchulteCarolin PirklIzabela HorvathGiada FalloLuca PerettiMichela TosettiBjoern H. MenzeGuido BuonincontriNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-17 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Pedro A. Gómez
Matteo Cencini
Mohammad Golbabaee
Rolf F. Schulte
Carolin Pirkl
Izabela Horvath
Giada Fallo
Luca Peretti
Michela Tosetti
Bjoern H. Menze
Guido Buonincontri
Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging
description Abstract Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5 T and 3 T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2 and 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 min. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.
format article
author Pedro A. Gómez
Matteo Cencini
Mohammad Golbabaee
Rolf F. Schulte
Carolin Pirkl
Izabela Horvath
Giada Fallo
Luca Peretti
Michela Tosetti
Bjoern H. Menze
Guido Buonincontri
author_facet Pedro A. Gómez
Matteo Cencini
Mohammad Golbabaee
Rolf F. Schulte
Carolin Pirkl
Izabela Horvath
Giada Fallo
Luca Peretti
Michela Tosetti
Bjoern H. Menze
Guido Buonincontri
author_sort Pedro A. Gómez
title Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging
title_short Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging
title_full Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging
title_fullStr Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging
title_full_unstemmed Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging
title_sort rapid three-dimensional multiparametric mri with quantitative transient-state imaging
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/05d2f38168cb46aeb7ef4f218b5fd783
work_keys_str_mv AT pedroagomez rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT matteocencini rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT mohammadgolbabaee rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT rolffschulte rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT carolinpirkl rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT izabelahorvath rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT giadafallo rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT lucaperetti rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT michelatosetti rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT bjoernhmenze rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
AT guidobuonincontri rapidthreedimensionalmultiparametricmriwithquantitativetransientstateimaging
_version_ 1718377484383158272