Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05d507904fe140cd941a3a33245b3716 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:05d507904fe140cd941a3a33245b3716 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:05d507904fe140cd941a3a33245b37162021-12-02T13:30:36ZHuman-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes10.1038/s41467-021-21896-92041-1723https://doaj.org/article/05d507904fe140cd941a3a33245b37162021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21896-9https://doaj.org/toc/2041-1723Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features.James A. DiaoJason K. WangWan Fung ChuiVictoria MountainSai Chowdary GullapallyRamprakash SrinivasanRichard N. MitchellBenjamin GlassSara HoffmanSudha K. RaoChirag MaheshwariAbhik LahiriAaditya PrakashRyan McLoughlinJennifer K. KernerMurray B. ResnickMichael C. MontaltoAditya KhoslaIlan N. WapinskiAndrew H. BeckHunter L. ElliottAmaro Taylor-WeinerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q James A. Diao Jason K. Wang Wan Fung Chui Victoria Mountain Sai Chowdary Gullapally Ramprakash Srinivasan Richard N. Mitchell Benjamin Glass Sara Hoffman Sudha K. Rao Chirag Maheshwari Abhik Lahiri Aaditya Prakash Ryan McLoughlin Jennifer K. Kerner Murray B. Resnick Michael C. Montalto Aditya Khosla Ilan N. Wapinski Andrew H. Beck Hunter L. Elliott Amaro Taylor-Weiner Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
description |
Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features. |
format |
article |
author |
James A. Diao Jason K. Wang Wan Fung Chui Victoria Mountain Sai Chowdary Gullapally Ramprakash Srinivasan Richard N. Mitchell Benjamin Glass Sara Hoffman Sudha K. Rao Chirag Maheshwari Abhik Lahiri Aaditya Prakash Ryan McLoughlin Jennifer K. Kerner Murray B. Resnick Michael C. Montalto Aditya Khosla Ilan N. Wapinski Andrew H. Beck Hunter L. Elliott Amaro Taylor-Weiner |
author_facet |
James A. Diao Jason K. Wang Wan Fung Chui Victoria Mountain Sai Chowdary Gullapally Ramprakash Srinivasan Richard N. Mitchell Benjamin Glass Sara Hoffman Sudha K. Rao Chirag Maheshwari Abhik Lahiri Aaditya Prakash Ryan McLoughlin Jennifer K. Kerner Murray B. Resnick Michael C. Montalto Aditya Khosla Ilan N. Wapinski Andrew H. Beck Hunter L. Elliott Amaro Taylor-Weiner |
author_sort |
James A. Diao |
title |
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
title_short |
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
title_full |
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
title_fullStr |
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
title_full_unstemmed |
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
title_sort |
human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/05d507904fe140cd941a3a33245b3716 |
work_keys_str_mv |
AT jamesadiao humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT jasonkwang humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT wanfungchui humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT victoriamountain humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT saichowdarygullapally humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT ramprakashsrinivasan humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT richardnmitchell humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT benjaminglass humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT sarahoffman humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT sudhakrao humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT chiragmaheshwari humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT abhiklahiri humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT aadityaprakash humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT ryanmcloughlin humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT jenniferkkerner humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT murraybresnick humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT michaelcmontalto humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT adityakhosla humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT ilannwapinski humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT andrewhbeck humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT hunterlelliott humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes AT amarotaylorweiner humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes |
_version_ |
1718392894151196672 |