Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes

Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: James A. Diao, Jason K. Wang, Wan Fung Chui, Victoria Mountain, Sai Chowdary Gullapally, Ramprakash Srinivasan, Richard N. Mitchell, Benjamin Glass, Sara Hoffman, Sudha K. Rao, Chirag Maheshwari, Abhik Lahiri, Aaditya Prakash, Ryan McLoughlin, Jennifer K. Kerner, Murray B. Resnick, Michael C. Montalto, Aditya Khosla, Ilan N. Wapinski, Andrew H. Beck, Hunter L. Elliott, Amaro Taylor-Weiner
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/05d507904fe140cd941a3a33245b3716
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:05d507904fe140cd941a3a33245b3716
record_format dspace
spelling oai:doaj.org-article:05d507904fe140cd941a3a33245b37162021-12-02T13:30:36ZHuman-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes10.1038/s41467-021-21896-92041-1723https://doaj.org/article/05d507904fe140cd941a3a33245b37162021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21896-9https://doaj.org/toc/2041-1723Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features.James A. DiaoJason K. WangWan Fung ChuiVictoria MountainSai Chowdary GullapallyRamprakash SrinivasanRichard N. MitchellBenjamin GlassSara HoffmanSudha K. RaoChirag MaheshwariAbhik LahiriAaditya PrakashRyan McLoughlinJennifer K. KernerMurray B. ResnickMichael C. MontaltoAditya KhoslaIlan N. WapinskiAndrew H. BeckHunter L. ElliottAmaro Taylor-WeinerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
James A. Diao
Jason K. Wang
Wan Fung Chui
Victoria Mountain
Sai Chowdary Gullapally
Ramprakash Srinivasan
Richard N. Mitchell
Benjamin Glass
Sara Hoffman
Sudha K. Rao
Chirag Maheshwari
Abhik Lahiri
Aaditya Prakash
Ryan McLoughlin
Jennifer K. Kerner
Murray B. Resnick
Michael C. Montalto
Aditya Khosla
Ilan N. Wapinski
Andrew H. Beck
Hunter L. Elliott
Amaro Taylor-Weiner
Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
description Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features.
format article
author James A. Diao
Jason K. Wang
Wan Fung Chui
Victoria Mountain
Sai Chowdary Gullapally
Ramprakash Srinivasan
Richard N. Mitchell
Benjamin Glass
Sara Hoffman
Sudha K. Rao
Chirag Maheshwari
Abhik Lahiri
Aaditya Prakash
Ryan McLoughlin
Jennifer K. Kerner
Murray B. Resnick
Michael C. Montalto
Aditya Khosla
Ilan N. Wapinski
Andrew H. Beck
Hunter L. Elliott
Amaro Taylor-Weiner
author_facet James A. Diao
Jason K. Wang
Wan Fung Chui
Victoria Mountain
Sai Chowdary Gullapally
Ramprakash Srinivasan
Richard N. Mitchell
Benjamin Glass
Sara Hoffman
Sudha K. Rao
Chirag Maheshwari
Abhik Lahiri
Aaditya Prakash
Ryan McLoughlin
Jennifer K. Kerner
Murray B. Resnick
Michael C. Montalto
Aditya Khosla
Ilan N. Wapinski
Andrew H. Beck
Hunter L. Elliott
Amaro Taylor-Weiner
author_sort James A. Diao
title Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
title_short Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
title_full Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
title_fullStr Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
title_full_unstemmed Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
title_sort human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/05d507904fe140cd941a3a33245b3716
work_keys_str_mv AT jamesadiao humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT jasonkwang humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT wanfungchui humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT victoriamountain humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT saichowdarygullapally humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT ramprakashsrinivasan humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT richardnmitchell humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT benjaminglass humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT sarahoffman humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT sudhakrao humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT chiragmaheshwari humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT abhiklahiri humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT aadityaprakash humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT ryanmcloughlin humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT jenniferkkerner humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT murraybresnick humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT michaelcmontalto humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT adityakhosla humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT ilannwapinski humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT andrewhbeck humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT hunterlelliott humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
AT amarotaylorweiner humaninterpretableimagefeaturesderivedfromdenselymappedcancerpathologyslidespredictdiversemolecularphenotypes
_version_ 1718392894151196672