Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
Abstract The controlled introduction of elastic strains is an appealing strategy for modulating the physical properties of semiconductor materials. With the recent discovery of large elastic deformation in nanoscale specimens as diverse as silicon and diamond, employing this strategy to improve devi...
Guardado en:
Autores principales: | Evgenii Tsymbalov, Zhe Shi, Ming Dao, Subra Suresh, Ju Li, Alexander Shapeev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05ea09ba993c4d1f84826a23b4e86974 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
por: Zachary M. Gibbs, et al.
Publicado: (2017) -
Optimal band structure for thermoelectrics with realistic scattering and bands
por: Junsoo Park, et al.
Publicado: (2021) -
Facile measurement of single-crystal elastic constants from polycrystalline samples
por: Xinpeng Du, et al.
Publicado: (2017) -
Restructured single parabolic band model for quick analysis in thermoelectricity
por: Jianbo Zhu, et al.
Publicado: (2021) -
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics
por: Svetoslav Nikolov, et al.
Publicado: (2021)