Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm
The Muskingum method is one the simplest and most applicable methods of flood routing. Optimizing the coefficients of linear Muskingum is of great importance to enhance accuracy of computations on an outflow hydrograph. In this study, considering the uncertainty of flood in the rivers and by applica...
Guardado en:
Autores principales: | Hadi Norouzi, Jalal Bazargan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05f719d3324b46ec8e93a826e192c460 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Parameter estimation of Muskingum model using grey wolf optimizer algorithm
por: Reyhaneh Akbari, et al.
Publicado: (2021) -
Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption
por: Wen-Shing Lee, et al.
Publicado: (2021) -
Characterization of Giant Magnetostrictive Materials Using Three Complex Material Parameters by Particle Swarm Optimization
por: Yukai Chen, et al.
Publicado: (2021) -
Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows
por: Eui Hoon Lee
Publicado: (2021) -
A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images
por: Do Ngoc Tuyen, et al.
Publicado: (2021)