Self-Supervised Monocular Depth Estimation With Extensive Pretraining
Although depth estimation is a key technology for three-dimensional sensing applications involving motion, active sensors such as LiDAR and depth cameras tend to be expensive and bulky. Here, we explore the potential of monocular depth estimation (MDE) based on a self-supervised approach. MDE is a p...
Guardado en:
Autor principal: | Hyukdoo Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/05fc891f131343b9b113a4ba39a130ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Chao Fan, et al.
Publicado: (2021) -
Monocular Human Depth Estimation Via Pose Estimation
por: Jinyoung Jun, et al.
Publicado: (2021) -
A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
por: Faisal Khan, et al.
Publicado: (2021) -
Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
por: Huihui Xu, et al.
Publicado: (2021) -
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021)