Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model

The gram-negative bacterium Vibrio cholerae causes the life-threatening diarrheal disease cholera, which is spread through the ingestion of contaminated food or water. Cholera epidemics occur largely in developing countries that lack proper infrastructure to treat sewage and provide clean water. Num...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dustin A. Farr, Dhrubajyoti Nag, Jeffrey H. Withey
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/0604737fb0374a928ed8f1849836855d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0604737fb0374a928ed8f1849836855d
record_format dspace
spelling oai:doaj.org-article:0604737fb0374a928ed8f1849836855d2021-11-30T13:58:20ZCharacterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model2235-298810.3389/fcimb.2021.722520https://doaj.org/article/0604737fb0374a928ed8f1849836855d2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fcimb.2021.722520/fullhttps://doaj.org/toc/2235-2988The gram-negative bacterium Vibrio cholerae causes the life-threatening diarrheal disease cholera, which is spread through the ingestion of contaminated food or water. Cholera epidemics occur largely in developing countries that lack proper infrastructure to treat sewage and provide clean water. Numerous vertebrate fish species have been found to be natural V. cholerae hosts. Based on these findings, zebrafish (Danio rerio) have been developed as a natural host model for V. cholerae. Diarrheal symptoms similar to those seen in humans are seen in zebrafish as early as 6 hours after exposure. Our understanding of basic zebrafish immunology is currently rudimentary, and no research has been done to date exploring the immune response of zebrafish to V. cholerae infection. In the present study, zebrafish were infected with either pandemic El Tor or non-pandemic, environmental V. cholerae strains and select immunological markers were assessed to determine cellular immunity and humoral immunity. Significant increases in the gene expression of two transcription factors, T-bet and GATA3, were observed in response to infection with both V. cholerae strains, as were levels of mucosal related antibodies. Additionally, the cytokine IL-13 was shown to be significantly elevated and paralleled the mucin output in zebrafish excretions, strengthening our knowledge of IL-13 induced mucin production in cholera. The data presented here further solidify the relevancy of the zebrafish model in studying V. cholerae, as well as expanding its utility in the field of cholera immunology.Dustin A. FarrDhrubajyoti NagJeffrey H. WitheyFrontiers Media S.A.articlezebrafishcholeraimmune responseVibrio choleraebacterial pathogenesisMicrobiologyQR1-502ENFrontiers in Cellular and Infection Microbiology, Vol 11 (2021)
institution DOAJ
collection DOAJ
language EN
topic zebrafish
cholera
immune response
Vibrio cholerae
bacterial pathogenesis
Microbiology
QR1-502
spellingShingle zebrafish
cholera
immune response
Vibrio cholerae
bacterial pathogenesis
Microbiology
QR1-502
Dustin A. Farr
Dhrubajyoti Nag
Jeffrey H. Withey
Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model
description The gram-negative bacterium Vibrio cholerae causes the life-threatening diarrheal disease cholera, which is spread through the ingestion of contaminated food or water. Cholera epidemics occur largely in developing countries that lack proper infrastructure to treat sewage and provide clean water. Numerous vertebrate fish species have been found to be natural V. cholerae hosts. Based on these findings, zebrafish (Danio rerio) have been developed as a natural host model for V. cholerae. Diarrheal symptoms similar to those seen in humans are seen in zebrafish as early as 6 hours after exposure. Our understanding of basic zebrafish immunology is currently rudimentary, and no research has been done to date exploring the immune response of zebrafish to V. cholerae infection. In the present study, zebrafish were infected with either pandemic El Tor or non-pandemic, environmental V. cholerae strains and select immunological markers were assessed to determine cellular immunity and humoral immunity. Significant increases in the gene expression of two transcription factors, T-bet and GATA3, were observed in response to infection with both V. cholerae strains, as were levels of mucosal related antibodies. Additionally, the cytokine IL-13 was shown to be significantly elevated and paralleled the mucin output in zebrafish excretions, strengthening our knowledge of IL-13 induced mucin production in cholera. The data presented here further solidify the relevancy of the zebrafish model in studying V. cholerae, as well as expanding its utility in the field of cholera immunology.
format article
author Dustin A. Farr
Dhrubajyoti Nag
Jeffrey H. Withey
author_facet Dustin A. Farr
Dhrubajyoti Nag
Jeffrey H. Withey
author_sort Dustin A. Farr
title Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model
title_short Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model
title_full Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model
title_fullStr Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model
title_full_unstemmed Characterization of the Immune Response to Vibrio cholerae Infection in a Natural Host Model
title_sort characterization of the immune response to vibrio cholerae infection in a natural host model
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/0604737fb0374a928ed8f1849836855d
work_keys_str_mv AT dustinafarr characterizationoftheimmuneresponsetovibriocholeraeinfectioninanaturalhostmodel
AT dhrubajyotinag characterizationoftheimmuneresponsetovibriocholeraeinfectioninanaturalhostmodel
AT jeffreyhwithey characterizationoftheimmuneresponsetovibriocholeraeinfectioninanaturalhostmodel
_version_ 1718406483766411264