Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests

During the last decade spatial patterns of industrial fisheries have been increasingly characterized using tracking technologies and machine learning analytical algorithms. In contrast, for small-scale fisheries, fishers’ behaviour for estimating and mapping fishing effort has only been anecdotally...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Faustinato Behivoke, Marie-Pierre Etienne, Jérôme Guitton, Roddy Michel Randriatsara, Eulalie Ranaivoson, Marc Léopold
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/0617482d707d4de8bbdaf3c7c39f7105
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0617482d707d4de8bbdaf3c7c39f7105
record_format dspace
spelling oai:doaj.org-article:0617482d707d4de8bbdaf3c7c39f71052021-12-01T04:42:34ZEstimating fishing effort in small-scale fisheries using GPS tracking data and random forests1470-160X10.1016/j.ecolind.2020.107321https://doaj.org/article/0617482d707d4de8bbdaf3c7c39f71052021-04-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X20312632https://doaj.org/toc/1470-160XDuring the last decade spatial patterns of industrial fisheries have been increasingly characterized using tracking technologies and machine learning analytical algorithms. In contrast, for small-scale fisheries, fishers’ behaviour for estimating and mapping fishing effort has only been anecdotally explored. Following a comparative approach, we conducted a boat tracking survey in a small-scale reef fishery in Madagascar and investigated the performance of a learning random forest algorithm and a speed threshold for estimating and mapping fishing effort. We monitored the movements of a sample of 31 traditional sailing fishing boats at around 45 s time interval using small GPS trackers. A total of 306 daily tracks were recorded among five gear types (beach seine, mosquito trawl net, gillnet, handline, and speargun). To ground-truth GPS location data, fishers’ behaviour was simultaneously recorded by a single on-board observer for 49 tracks. Typical, gear-specific track patterns were observed. Overall, the random forest model was found to be the most reliable, generic, and complex method for processing boat GPS tracks and detecting spatially-explicit fishing events regardless gear type. Predictions of mean fishing effort per trip showed that both methods reached from 89.4% to 97.0% accuracy across gear types. Our findings showed that boat tracking combined with on-board observation would improve the reliability of spatial fishing effort indicators in small-scale fisheries and contribute to more efficient management. Selection of the most appropriate GPS data processing method is dependent on local gear use, fishing effort indicators, and available analytical expertise.Faustinato BehivokeMarie-Pierre EtienneJérôme GuittonRoddy Michel RandriatsaraEulalie RanaivosonMarc LéopoldElsevierarticleBoat movementFishery mapGPS trackMadagascarSpatial dataSpeed thresholdEcologyQH540-549.5ENEcological Indicators, Vol 123, Iss , Pp 107321- (2021)
institution DOAJ
collection DOAJ
language EN
topic Boat movement
Fishery map
GPS track
Madagascar
Spatial data
Speed threshold
Ecology
QH540-549.5
spellingShingle Boat movement
Fishery map
GPS track
Madagascar
Spatial data
Speed threshold
Ecology
QH540-549.5
Faustinato Behivoke
Marie-Pierre Etienne
Jérôme Guitton
Roddy Michel Randriatsara
Eulalie Ranaivoson
Marc Léopold
Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
description During the last decade spatial patterns of industrial fisheries have been increasingly characterized using tracking technologies and machine learning analytical algorithms. In contrast, for small-scale fisheries, fishers’ behaviour for estimating and mapping fishing effort has only been anecdotally explored. Following a comparative approach, we conducted a boat tracking survey in a small-scale reef fishery in Madagascar and investigated the performance of a learning random forest algorithm and a speed threshold for estimating and mapping fishing effort. We monitored the movements of a sample of 31 traditional sailing fishing boats at around 45 s time interval using small GPS trackers. A total of 306 daily tracks were recorded among five gear types (beach seine, mosquito trawl net, gillnet, handline, and speargun). To ground-truth GPS location data, fishers’ behaviour was simultaneously recorded by a single on-board observer for 49 tracks. Typical, gear-specific track patterns were observed. Overall, the random forest model was found to be the most reliable, generic, and complex method for processing boat GPS tracks and detecting spatially-explicit fishing events regardless gear type. Predictions of mean fishing effort per trip showed that both methods reached from 89.4% to 97.0% accuracy across gear types. Our findings showed that boat tracking combined with on-board observation would improve the reliability of spatial fishing effort indicators in small-scale fisheries and contribute to more efficient management. Selection of the most appropriate GPS data processing method is dependent on local gear use, fishing effort indicators, and available analytical expertise.
format article
author Faustinato Behivoke
Marie-Pierre Etienne
Jérôme Guitton
Roddy Michel Randriatsara
Eulalie Ranaivoson
Marc Léopold
author_facet Faustinato Behivoke
Marie-Pierre Etienne
Jérôme Guitton
Roddy Michel Randriatsara
Eulalie Ranaivoson
Marc Léopold
author_sort Faustinato Behivoke
title Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
title_short Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
title_full Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
title_fullStr Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
title_full_unstemmed Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests
title_sort estimating fishing effort in small-scale fisheries using gps tracking data and random forests
publisher Elsevier
publishDate 2021
url https://doaj.org/article/0617482d707d4de8bbdaf3c7c39f7105
work_keys_str_mv AT faustinatobehivoke estimatingfishingeffortinsmallscalefisheriesusinggpstrackingdataandrandomforests
AT mariepierreetienne estimatingfishingeffortinsmallscalefisheriesusinggpstrackingdataandrandomforests
AT jeromeguitton estimatingfishingeffortinsmallscalefisheriesusinggpstrackingdataandrandomforests
AT roddymichelrandriatsara estimatingfishingeffortinsmallscalefisheriesusinggpstrackingdataandrandomforests
AT eulalieranaivoson estimatingfishingeffortinsmallscalefisheriesusinggpstrackingdataandrandomforests
AT marcleopold estimatingfishingeffortinsmallscalefisheriesusinggpstrackingdataandrandomforests
_version_ 1718405802168942592