Investigation of seismic response of asymmetric buckling restrained braced frames equipped with zipper struts

One of the most important deficiency of buckling restrained braced frames is the concentration of lateral drifts in some specific stories and the soft story mechanism, under moderate to severe earthquakes. In this paper, in order to prevent the development of soft story mechanism in buckling restrai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nader Hoveidae, Navid Ahmadi
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2021
Materias:
Acceso en línea:https://doaj.org/article/061bce7d8ec047b286eb25d636c6b7c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:One of the most important deficiency of buckling restrained braced frames is the concentration of lateral drifts in some specific stories and the soft story mechanism, under moderate to severe earthquakes. In this paper, in order to prevent the development of soft story mechanism in buckling restrained braced frames, asymmetric configuration along with a zipper strut is proposed for chevron type ordinary buckling restrained braced frame.The zipper strut connects the midpoints of beams at the brace intersections in all stories and carry the unbalanced axial force developed at the intersection. In addition, it causes the BRBs to uniformly yield over the height of structure. For this purpose, 4, 10, and 14 story buckling restrained braced frames were designed according to Iranian seismic code, and the nonlinear time history analyses were performed in Opensees, subsequently. The analysis results showed that the asymmetric buckling restrained braced frames possess more uniform lateral drift demands in comparison to ordinary symmetric buckling restrained braced frames, is less prone to the formation of soft story mechanism. The zipper elements were found to carry a significant axial forces during analyses, and were responsible for distribution of unbalanced forces among BRBs over the height of braced frames.