<italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering

ABSTRACT The emergence of Klebsiella pneumoniae carbapenemases (KPCs), β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and avibactam (AVI), a potent β-lactamase inhibitor, r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Melissa D. Barnes, Marisa L. Winkler, Magdalena A. Taracila, Malcolm G. Page, Eric Desarbre, Barry N. Kreiswirth, Ryan K. Shields, Minh-Hong Nguyen, Cornelius Clancy, Brad Spellberg, Krisztina M. Papp-Wallace, Robert A. Bonomo
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/062e9bcecccb41e7b5c7a796418333b1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:062e9bcecccb41e7b5c7a796418333b1
record_format dspace
spelling oai:doaj.org-article:062e9bcecccb41e7b5c7a796418333b12021-11-15T15:51:51Z<italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering10.1128/mBio.00528-172150-7511https://doaj.org/article/062e9bcecccb41e7b5c7a796418333b12017-11-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00528-17https://doaj.org/toc/2150-7511ABSTRACT The emergence of Klebsiella pneumoniae carbapenemases (KPCs), β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and avibactam (AVI), a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn “traps” β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i) the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii) the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii) E166 is displaced by 2 Å when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases. IMPORTANCE Antibiotic resistance is emerging at unprecedented rates and threatens to reach crisis levels. One key mechanism of resistance is the breakdown of β-lactam antibiotics by β-lactamase enzymes. KPC-2 is a β-lactamase that inactivates carbapenems and β-lactamase inhibitors (e.g., clavulanate) and is prevalent around the world, including in the United States. Resistance to the new antibiotic ceftazidime-avibactam, which was designed to overcome KPC resistance, had already emerged within a year. Using protein engineering, we uncovered a mechanism by which resistance to this new drug emerges, which could arm scientists with the ability to forestall such resistance to future drugs.Melissa D. BarnesMarisa L. WinklerMagdalena A. TaracilaMalcolm G. PageEric DesarbreBarry N. KreiswirthRyan K. ShieldsMinh-Hong NguyenCornelius ClancyBrad SpellbergKrisztina M. Papp-WallaceRobert A. BonomoAmerican Society for MicrobiologyarticleKPC-2avibactambeta-lactambeta-lactamasecarbapenemaseceftazidimeMicrobiologyQR1-502ENmBio, Vol 8, Iss 5 (2017)
institution DOAJ
collection DOAJ
language EN
topic KPC-2
avibactam
beta-lactam
beta-lactamase
carbapenemase
ceftazidime
Microbiology
QR1-502
spellingShingle KPC-2
avibactam
beta-lactam
beta-lactamase
carbapenemase
ceftazidime
Microbiology
QR1-502
Melissa D. Barnes
Marisa L. Winkler
Magdalena A. Taracila
Malcolm G. Page
Eric Desarbre
Barry N. Kreiswirth
Ryan K. Shields
Minh-Hong Nguyen
Cornelius Clancy
Brad Spellberg
Krisztina M. Papp-Wallace
Robert A. Bonomo
<italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering
description ABSTRACT The emergence of Klebsiella pneumoniae carbapenemases (KPCs), β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and avibactam (AVI), a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn “traps” β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i) the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii) the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii) E166 is displaced by 2 Å when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases. IMPORTANCE Antibiotic resistance is emerging at unprecedented rates and threatens to reach crisis levels. One key mechanism of resistance is the breakdown of β-lactam antibiotics by β-lactamase enzymes. KPC-2 is a β-lactamase that inactivates carbapenems and β-lactamase inhibitors (e.g., clavulanate) and is prevalent around the world, including in the United States. Resistance to the new antibiotic ceftazidime-avibactam, which was designed to overcome KPC resistance, had already emerged within a year. Using protein engineering, we uncovered a mechanism by which resistance to this new drug emerges, which could arm scientists with the ability to forestall such resistance to future drugs.
format article
author Melissa D. Barnes
Marisa L. Winkler
Magdalena A. Taracila
Malcolm G. Page
Eric Desarbre
Barry N. Kreiswirth
Ryan K. Shields
Minh-Hong Nguyen
Cornelius Clancy
Brad Spellberg
Krisztina M. Papp-Wallace
Robert A. Bonomo
author_facet Melissa D. Barnes
Marisa L. Winkler
Magdalena A. Taracila
Malcolm G. Page
Eric Desarbre
Barry N. Kreiswirth
Ryan K. Shields
Minh-Hong Nguyen
Cornelius Clancy
Brad Spellberg
Krisztina M. Papp-Wallace
Robert A. Bonomo
author_sort Melissa D. Barnes
title <italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering
title_short <italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering
title_full <italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering
title_fullStr <italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering
title_full_unstemmed <italic toggle="yes">Klebsiella pneumoniae</italic> Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering
title_sort <italic toggle="yes">klebsiella pneumoniae</italic> carbapenemase-2 (kpc-2), substitutions at ambler position asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/062e9bcecccb41e7b5c7a796418333b1
work_keys_str_mv AT melissadbarnes italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT marisalwinkler italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT magdalenaataracila italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT malcolmgpage italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT ericdesarbre italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT barrynkreiswirth italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT ryankshields italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT minhhongnguyen italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT corneliusclancy italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT bradspellberg italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT krisztinampappwallace italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
AT robertabonomo italictoggleyesklebsiellapneumoniaeitaliccarbapenemase2kpc2substitutionsatamblerpositionasp179andresistancetoceftazidimeavibactamuniqueantibioticresistantphenotypesemergefromblactamaseproteinengineering
_version_ 1718427316734918656