Polymath: Low-Latency MPC via Secure Polynomial Evaluations and Its Applications
While the practicality of secure multi-party computation (MPC) has been extensively analyzed and improved over the past decade, we are hitting the limits of efficiency with the traditional approaches of representing the computed functionalities as generic arithmetic or Boolean circuits. This work fo...
Enregistré dans:
Auteurs principaux: | Lu Donghang, Yu Albert, Kate Aniket, Maji Hemanta |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Sciendo
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/063828fcc93e4380a595dfcfa822cf12 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Differentially private partition selection
par: Desfontaines Damien, et autres
Publié: (2022) -
Multiparty Reach and Frequency Histogram: Private, Secure, and Practical
par: Ghazi Badih, et autres
Publié: (2022) -
The Effectiveness of Adaptation Methods in Improving User Engagement and Privacy Protection on Social Network Sites
par: Namara Moses, et autres
Publié: (2022) -
Toward Uncensorable, Anonymous and Private Access Over Satoshi Blockchains
par: Recabarren Ruben, et autres
Publié: (2022) -
Polaris: Transparent Succinct Zero-Knowledge Arguments for R1CS with Efficient Verifier
par: Fu Shihui, et autres
Publié: (2022)