Tuning interlaminar fracture toughness of fine z-pin reinforced polymer composite
This paper aims to improve the interlaminar fracture toughness of carbon fiber reinforced polymer (CFRP) composites by implanting fine z-pins with the minimum damage on in-plane fibers. Z-pins with diameters as small as 0.1 mm and 0.2 mm were prepared by using carbon fiber tows with different mechan...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/064b13f8c6b546bc86059666e6b01987 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper aims to improve the interlaminar fracture toughness of carbon fiber reinforced polymer (CFRP) composites by implanting fine z-pins with the minimum damage on in-plane fibers. Z-pins with diameters as small as 0.1 mm and 0.2 mm were prepared by using carbon fiber tows with different mechanical properties. The effect of the mechanical property of carbon fiber pin on the interlaminar fracture toughness of composite laminate was investigated to reveal the enhancement mechanism. The results show that fine z-pins significantly improve the interlaminar fracture toughness and simultaneously are favorable for maintaining high retentions of in-plane mechanical properties of composite laminate. Compared with control sample, the propagation GIC values of CFRPs implanted with 0.2 mm and 0.1 mm CCF800 z-pins increase by 276 % and 541 % respectively at a low pin volume fraction of 0.16 vol%. Both z-pin pull-out and z-pin fracture failure behaviors can be observed for these fine z-pin reinforced composites. The higher tensile properties of z-pins and better transverse shear resistance tend to result in the failure of z-pin pull-out. With the decrease of z-pin diameter, the probability of z-pin fracture failure becomes greater, and correspondingly stronger pinning effect and larger failure load are achieved. |
---|