Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.
Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less). Standard analysis of flow cytometry data relies...
Guardado en:
Autores principales: | Andrew Cron, Cécile Gouttefangeas, Jacob Frelinger, Lin Lin, Satwinder K Singh, Cedrik M Britten, Marij J P Welters, Sjoerd H van der Burg, Mike West, Cliburn Chan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06513624c96542608300c537b0a8b6af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
por: Vincent van Unen, et al.
Publicado: (2017) -
A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes
por: Johannes Nordlohne, et al.
Publicado: (2021) -
Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.
por: Michael Degtyarev, et al.
Publicado: (2014) -
treekoR: identifying cellular-to-phenotype associations by elucidating hierarchical relationships in high-dimensional cytometry data
por: Adam Chan, et al.
Publicado: (2021) -
FlowKit: A Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows
por: Scott White, et al.
Publicado: (2021)