Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors.
<h4>Background</h4>The identification of human disease-related microRNAs (disease miRNAs) is important for further investigating their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been accumulated recently. On the basis of the...
Guardado en:
Autores principales: | Ping Xuan, Ke Han, Maozu Guo, Yahong Guo, Jinbao Li, Jian Ding, Yong Liu, Qiguo Dai, Jin Li, Zhixia Teng, Yufei Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/065252b329b546a5b742ca3fe8994d0c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Finding The Most Desirable Car Using K-Nearest Neighbor From E-Commerce Websites
por: Mohammad Farid Naufal, et al.
Publicado: (2021) -
Most Caenorhabditis elegans microRNAs are individually not essential for development or viability.
por: Eric A Miska, et al.
Publicado: (2007) -
Network neighbors of drug targets contribute to drug side-effect similarity.
por: Lucas Brouwers, et al.
Publicado: (2011) -
Trajectory Similarity Analysis with the Weight of Direction and <i>k</i>-Neighborhood for AIS Data
por: Pin Nie, et al.
Publicado: (2021) -
Coupling the K-nearest neighbors and locally weighted linear regression with ensemble Kalman filter for data-driven data assimilation
por: Fan Manhong, et al.
Publicado: (2021)