Metamaterial emitter for thermophotovoltaics stable up to 1400 °C

Abstract High temperature stable selective emitters can significantly increase efficiency and radiative power in thermophotovoltaic (TPV) systems. However, optical properties of structured emitters reported so far degrade at temperatures approaching 1200 °C due to various degradation mechanisms. We...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manohar Chirumamilla, Gnanavel Vaidhyanathan Krishnamurthy, Katrin Knopp, Tobias Krekeler, Matthias Graf, Dirk Jalas, Martin Ritter, Michael Störmer, Alexander Yu Petrov, Manfred Eich
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/065a0eaa0973406fb5364bc0a135153b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:065a0eaa0973406fb5364bc0a135153b
record_format dspace
spelling oai:doaj.org-article:065a0eaa0973406fb5364bc0a135153b2021-12-02T16:08:17ZMetamaterial emitter for thermophotovoltaics stable up to 1400 °C10.1038/s41598-019-43640-62045-2322https://doaj.org/article/065a0eaa0973406fb5364bc0a135153b2019-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-43640-6https://doaj.org/toc/2045-2322Abstract High temperature stable selective emitters can significantly increase efficiency and radiative power in thermophotovoltaic (TPV) systems. However, optical properties of structured emitters reported so far degrade at temperatures approaching 1200 °C due to various degradation mechanisms. We have realized a 1D structured emitter based on a sputtered W-HfO2 layered metamaterial and demonstrated desired band edge spectral properties at 1400 °C. To the best of our knowledge the temperature of 1400 °C is the highest reported for a structured emitter, so far. The spatial confinement and absence of edges stabilizes the W-HfO2 multilayer system to temperatures unprecedented for other nanoscaled W-structures. Only when this confinement is broken W starts to show the well-known self-diffusion behavior transforming to spherical shaped W-islands. We further show that the oxidation of W by atmospheric oxygen could be prevented by reducing the vacuum pressure below 10−5 mbar. When oxidation is mitigated we observe that the 20 nm spatially confined W films survive temperatures up to 1400 °C. The demonstrated thermal stability is limited by grain growth in HfO2, which leads to a rupture of the W-layers, thus, to a degradation of the multilayer system at 1450 °C.Manohar ChirumamillaGnanavel Vaidhyanathan KrishnamurthyKatrin KnoppTobias KrekelerMatthias GrafDirk JalasMartin RitterMichael StörmerAlexander Yu PetrovManfred EichNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Manohar Chirumamilla
Gnanavel Vaidhyanathan Krishnamurthy
Katrin Knopp
Tobias Krekeler
Matthias Graf
Dirk Jalas
Martin Ritter
Michael Störmer
Alexander Yu Petrov
Manfred Eich
Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
description Abstract High temperature stable selective emitters can significantly increase efficiency and radiative power in thermophotovoltaic (TPV) systems. However, optical properties of structured emitters reported so far degrade at temperatures approaching 1200 °C due to various degradation mechanisms. We have realized a 1D structured emitter based on a sputtered W-HfO2 layered metamaterial and demonstrated desired band edge spectral properties at 1400 °C. To the best of our knowledge the temperature of 1400 °C is the highest reported for a structured emitter, so far. The spatial confinement and absence of edges stabilizes the W-HfO2 multilayer system to temperatures unprecedented for other nanoscaled W-structures. Only when this confinement is broken W starts to show the well-known self-diffusion behavior transforming to spherical shaped W-islands. We further show that the oxidation of W by atmospheric oxygen could be prevented by reducing the vacuum pressure below 10−5 mbar. When oxidation is mitigated we observe that the 20 nm spatially confined W films survive temperatures up to 1400 °C. The demonstrated thermal stability is limited by grain growth in HfO2, which leads to a rupture of the W-layers, thus, to a degradation of the multilayer system at 1450 °C.
format article
author Manohar Chirumamilla
Gnanavel Vaidhyanathan Krishnamurthy
Katrin Knopp
Tobias Krekeler
Matthias Graf
Dirk Jalas
Martin Ritter
Michael Störmer
Alexander Yu Petrov
Manfred Eich
author_facet Manohar Chirumamilla
Gnanavel Vaidhyanathan Krishnamurthy
Katrin Knopp
Tobias Krekeler
Matthias Graf
Dirk Jalas
Martin Ritter
Michael Störmer
Alexander Yu Petrov
Manfred Eich
author_sort Manohar Chirumamilla
title Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
title_short Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
title_full Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
title_fullStr Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
title_full_unstemmed Metamaterial emitter for thermophotovoltaics stable up to 1400 °C
title_sort metamaterial emitter for thermophotovoltaics stable up to 1400 °c
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/065a0eaa0973406fb5364bc0a135153b
work_keys_str_mv AT manoharchirumamilla metamaterialemitterforthermophotovoltaicsstableupto1400c
AT gnanavelvaidhyanathankrishnamurthy metamaterialemitterforthermophotovoltaicsstableupto1400c
AT katrinknopp metamaterialemitterforthermophotovoltaicsstableupto1400c
AT tobiaskrekeler metamaterialemitterforthermophotovoltaicsstableupto1400c
AT matthiasgraf metamaterialemitterforthermophotovoltaicsstableupto1400c
AT dirkjalas metamaterialemitterforthermophotovoltaicsstableupto1400c
AT martinritter metamaterialemitterforthermophotovoltaicsstableupto1400c
AT michaelstormer metamaterialemitterforthermophotovoltaicsstableupto1400c
AT alexanderyupetrov metamaterialemitterforthermophotovoltaicsstableupto1400c
AT manfredeich metamaterialemitterforthermophotovoltaicsstableupto1400c
_version_ 1718384511968870400