KrakN: Transfer Learning framework and dataset for infrastructure thin crack detection
Monitoring the technical condition of infrastructure is a crucial element of its maintenance. Although there are many deep learning models intended for this purpose, they are severely limited in their application due to labour-intensive gathering of new datasets and high demand for computing power d...
Guardado en:
Autores principales: | Mateusz Żarski, Bartosz Wójcik, Jarosław Adam Miszczak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/066bca083ea24379b22933f5afbdc6f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Simulation Analysis of the Evolution of Sustainable Operation of Transport Infrastructure Projects under Government Regulation Based on Prospect Theory and BP Neural Network
por: Chongsen Ma, et al.
Publicado: (2021) -
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
por: Jian Sun, et al.
Publicado: (2021) -
The Model of Makerspace Development Element and Performance Analysis Based on NVivo Classification
por: Yingyan Wang, et al.
Publicado: (2021) -
CT Imaging in the Diagnosis of Lung Injury of Organophosphorus Poisoning and Analysis of Its Correlation with Procalcitonin and C-Reactive Protein Levels
por: Wenwen Sun, et al.
Publicado: (2021) -
Application of Deep Learning in Financial Management Evaluation
por: Wenlei Shi, et al.
Publicado: (2021)