Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
Abstract Background With the rapid development of various advanced biotechnologies, researchers in related fields have realized that microRNAs (miRNAs) play critical roles in many serious human diseases. However, experimental identification of new miRNA–disease associations (MDAs) is expensive and t...
Guardado en:
Autores principales: | Feng Zhou, Meng-Meng Yin, Cui-Na Jiao, Zhen Cui, Jing-Xiu Zhao, Jin-Xing Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06795340c3f240aa8b3c389c1767cb02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Shanchen Pang, et al.
Publicado: (2021) -
IMDAILM: Inferring miRNA-Disease Association by Integrating lncRNA and miRNA Data
por: Yuhua Yao, et al.
Publicado: (2020) -
Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph
por: Van Tinh Nguyen, et al.
Publicado: (2021) -
Association between single-nucleotide polymorphisms in miRNA and breast cancer risk: an updated review
por: Arancibia,Trinidad, et al.
Publicado: (2021) -
Bipartite theory of irredundant set
por: Swaminathan,V, et al.
Publicado: (2011)