Contrastive Learning for 3D Point Clouds Classification and Shape Completion
In this paper, we present the idea of Self Supervised learning on the shape completion and classification of point clouds. Most 3D shape completion pipelines utilize AutoEncoders to extract features from point clouds used in downstream tasks such as classification, segmentation, detection, and other...
Guardado en:
Autores principales: | Danish Nazir, Muhammad Zeshan Afzal, Alain Pagani, Marcus Liwicki, Didier Stricker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0692d70bba7b47738add93318f10650f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High-Precision 3D Reconstruction for Small-to-Medium-Sized Objects Utilizing Line-Structured Light Scanning: A Review
por: Bin Cui, et al.
Publicado: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
Pole-Like Objects Segmentation and Multiscale Classification-Based Fusion from Mobile Point Clouds in Road Scenes
por: Ziyang Wang, et al.
Publicado: (2021) -
Forest Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds
por: Sean Krisanski, et al.
Publicado: (2021) -
MPCR-Net: Multiple Partial Point Clouds Registration Network Using a Global Template
por: Shijie Su, et al.
Publicado: (2021)