Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing
Abstract Displaying a full or tuneable emission spectrum with highly efficient is significant for luminescent materials used in solid-state lighting. Silicon carbide (SiC) has potential for use in photoelectric devices that operate under extreme conditions. In this paper, we present a method to sele...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/069dc4c85403409f9c07a620e19d4b64 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:069dc4c85403409f9c07a620e19d4b64 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:069dc4c85403409f9c07a620e19d4b642021-12-02T15:08:36ZSelective 6H-SiC White Light Emission by Picosecond Laser Direct Writing10.1038/s41598-017-18685-02045-2322https://doaj.org/article/069dc4c85403409f9c07a620e19d4b642018-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-18685-0https://doaj.org/toc/2045-2322Abstract Displaying a full or tuneable emission spectrum with highly efficient is significant for luminescent materials used in solid-state lighting. Silicon carbide (SiC) has potential for use in photoelectric devices that operate under extreme conditions. In this paper, we present a method to selectively modify the photoluminescence (PL) properties of SiC by ultrafast laser direct writing. Based on this method, visible white PL could be observed by the naked eye at room temperature under ultraviolet excitation. By increasing the laser power intensity from 40 to 80 MW/cm2, the PL of the irradiated samples increased and pure white sunlight-like emission with controlled colour temperature was realised. The optimised laser power intensity of 65 MW/cm2 achieved a desirable colour temperature similar to that of sunlight (x = 0.33, y = 0.33 and colour temperature of 5500 K) and suppressed blue emission. By direct laser irradiation along designed scanning path, a large-scale and arbitrary pattern white emission was fabricated. The origin of the white luminescence was a mixture of multiple luminescent transitions of oxygen-related centres that turned the Si-C system into silicon oxycarbide. This work sheds light on new luminescent materials and a preparation technique for next-generation lighting devices.Sicong WangLingfei JiLin LiYan WuYongzhe ZhangZhenyuan LinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sicong Wang Lingfei Ji Lin Li Yan Wu Yongzhe Zhang Zhenyuan Lin Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing |
description |
Abstract Displaying a full or tuneable emission spectrum with highly efficient is significant for luminescent materials used in solid-state lighting. Silicon carbide (SiC) has potential for use in photoelectric devices that operate under extreme conditions. In this paper, we present a method to selectively modify the photoluminescence (PL) properties of SiC by ultrafast laser direct writing. Based on this method, visible white PL could be observed by the naked eye at room temperature under ultraviolet excitation. By increasing the laser power intensity from 40 to 80 MW/cm2, the PL of the irradiated samples increased and pure white sunlight-like emission with controlled colour temperature was realised. The optimised laser power intensity of 65 MW/cm2 achieved a desirable colour temperature similar to that of sunlight (x = 0.33, y = 0.33 and colour temperature of 5500 K) and suppressed blue emission. By direct laser irradiation along designed scanning path, a large-scale and arbitrary pattern white emission was fabricated. The origin of the white luminescence was a mixture of multiple luminescent transitions of oxygen-related centres that turned the Si-C system into silicon oxycarbide. This work sheds light on new luminescent materials and a preparation technique for next-generation lighting devices. |
format |
article |
author |
Sicong Wang Lingfei Ji Lin Li Yan Wu Yongzhe Zhang Zhenyuan Lin |
author_facet |
Sicong Wang Lingfei Ji Lin Li Yan Wu Yongzhe Zhang Zhenyuan Lin |
author_sort |
Sicong Wang |
title |
Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing |
title_short |
Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing |
title_full |
Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing |
title_fullStr |
Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing |
title_full_unstemmed |
Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing |
title_sort |
selective 6h-sic white light emission by picosecond laser direct writing |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/069dc4c85403409f9c07a620e19d4b64 |
work_keys_str_mv |
AT sicongwang selective6hsicwhitelightemissionbypicosecondlaserdirectwriting AT lingfeiji selective6hsicwhitelightemissionbypicosecondlaserdirectwriting AT linli selective6hsicwhitelightemissionbypicosecondlaserdirectwriting AT yanwu selective6hsicwhitelightemissionbypicosecondlaserdirectwriting AT yongzhezhang selective6hsicwhitelightemissionbypicosecondlaserdirectwriting AT zhenyuanlin selective6hsicwhitelightemissionbypicosecondlaserdirectwriting |
_version_ |
1718388041101344768 |