Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor
Abstract Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), requires a high level of attention and is one of the most infectious diseases in the air. Present methods of diagnosing TB remain ineffective owing to their low sensitivity and time consumption. In this study, we pro...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06c2e48300b84d2aa61375abe0446db8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:06c2e48300b84d2aa61375abe0446db8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:06c2e48300b84d2aa61375abe0446db82021-12-02T15:54:02ZLaser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor10.1038/s41598-021-85039-22045-2322https://doaj.org/article/06c2e48300b84d2aa61375abe0446db82021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85039-2https://doaj.org/toc/2045-2322Abstract Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), requires a high level of attention and is one of the most infectious diseases in the air. Present methods of diagnosing TB remain ineffective owing to their low sensitivity and time consumption. In this study, we produced a green graphene nanofiber laser biosensor (LSG-NF) decorated with oil palm lignin-based synthetic silver nanoparticles (AgNPs). The resulting composite morphology was observed by field-emission scanning electron microscopy and transmission electron microscopy, which revealed the effective adaptation of the AgNPs to the LSG-NF surface. The successful attachment of AgNPs and LSG-NFs was also evident from X-ray diffraction and Raman spectroscopy studies. In order to verify the sensing efficiency, a selective DNA sample captured on AgNPs was investigated for specific binding with M.tb target DNA through selective hybridisation and mismatch analysis. Electrochemical impedance studies further confirmed sensitive detection of up to 1 fM, where a detection limit of 10−15 M was obtained by estimating the signal-to-noise ratio (S/N = 3:1) as 3σ. Successful DNA immobilisation and hybridisation was confirmed by the detection of phosphorus and nitrogen peaks based on X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The stability and repeatability of the analysis were high. This approach provides an affordable potential sensing system for the determination of M. tuberculosis biomarker and thus provides a new direction in medical diagnosis.Melvin Jia Yong TaiVeeradasan PerumalSubash C. B. GopinathPandian Bothi RajaMohamad Nasir Mohamad IbrahimIffah Najihah JantanNur Syahirah Husna SuhaimiWei-Wen LiuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Melvin Jia Yong Tai Veeradasan Perumal Subash C. B. Gopinath Pandian Bothi Raja Mohamad Nasir Mohamad Ibrahim Iffah Najihah Jantan Nur Syahirah Husna Suhaimi Wei-Wen Liu Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
description |
Abstract Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), requires a high level of attention and is one of the most infectious diseases in the air. Present methods of diagnosing TB remain ineffective owing to their low sensitivity and time consumption. In this study, we produced a green graphene nanofiber laser biosensor (LSG-NF) decorated with oil palm lignin-based synthetic silver nanoparticles (AgNPs). The resulting composite morphology was observed by field-emission scanning electron microscopy and transmission electron microscopy, which revealed the effective adaptation of the AgNPs to the LSG-NF surface. The successful attachment of AgNPs and LSG-NFs was also evident from X-ray diffraction and Raman spectroscopy studies. In order to verify the sensing efficiency, a selective DNA sample captured on AgNPs was investigated for specific binding with M.tb target DNA through selective hybridisation and mismatch analysis. Electrochemical impedance studies further confirmed sensitive detection of up to 1 fM, where a detection limit of 10−15 M was obtained by estimating the signal-to-noise ratio (S/N = 3:1) as 3σ. Successful DNA immobilisation and hybridisation was confirmed by the detection of phosphorus and nitrogen peaks based on X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The stability and repeatability of the analysis were high. This approach provides an affordable potential sensing system for the determination of M. tuberculosis biomarker and thus provides a new direction in medical diagnosis. |
format |
article |
author |
Melvin Jia Yong Tai Veeradasan Perumal Subash C. B. Gopinath Pandian Bothi Raja Mohamad Nasir Mohamad Ibrahim Iffah Najihah Jantan Nur Syahirah Husna Suhaimi Wei-Wen Liu |
author_facet |
Melvin Jia Yong Tai Veeradasan Perumal Subash C. B. Gopinath Pandian Bothi Raja Mohamad Nasir Mohamad Ibrahim Iffah Najihah Jantan Nur Syahirah Husna Suhaimi Wei-Wen Liu |
author_sort |
Melvin Jia Yong Tai |
title |
Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
title_short |
Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
title_full |
Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
title_fullStr |
Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
title_full_unstemmed |
Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
title_sort |
laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: a green biosensor |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/06c2e48300b84d2aa61375abe0446db8 |
work_keys_str_mv |
AT melvinjiayongtai laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT veeradasanperumal laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT subashcbgopinath laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT pandianbothiraja laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT mohamadnasirmohamadibrahim laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT iffahnajihahjantan laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT nursyahirahhusnasuhaimi laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor AT weiwenliu laserscribedgraphenenanofiberdecoratedwithoilpalmlignincappedsilvernanoparticlesagreenbiosensor |
_version_ |
1718385431017422848 |