Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model
Bo Jian,1,2 Wei Wu,2 Yingliang Song,1 Naiwen Tan,3 Chao Ma1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, 710032, China; 2Department of Oral & Maxillofacial Surgery, Sc...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06d0ea5a55ae4c87abba4e6965a1b5d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:06d0ea5a55ae4c87abba4e6965a1b5d8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:06d0ea5a55ae4c87abba4e6965a1b5d82021-12-02T11:02:29ZMicroporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model1178-2013https://doaj.org/article/06d0ea5a55ae4c87abba4e6965a1b5d82019-04-01T00:00:00Zhttps://www.dovepress.com/microporous-elastomeric-membranes-fabricated-with-polyglycerol-sebacat-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Bo Jian,1,2 Wei Wu,2 Yingliang Song,1 Naiwen Tan,3 Chao Ma1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, 710032, China; 2Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China; 3Department of Stomatology, Hospital 463 of PLA, Shenyang, Liaoning, People’s Republic of China Purpose: We aimed to fabricate guided bone regeneration (GBR) membrane using polyglycerol sebacate (PGS) and investigate the impact of scaffold pore size on osteogenesis.Materials and methods: PGS microporous membrane was fabricated by salt-leaching technique with various pore sizes. Twenty-eight male New Zealand rabbits were randomly divided into four groups: 25 µm PGS membrane, 53 µm PGS membrane, collagen membrane, and blank control group. Subsequently, standardized and critical-sized tibia defects were made in rabbits and the defective regions were covered with the specifically prepared membranes. After 4 and 12 weeks of in vivo incubation, bone samples were harvested from tibia. Micro-computed tomography scanning was performed on all bone samples. A three-dimensional visible representation of the constructs was obtained and used to compare the ratios of the ossifying volume to total construct volume (bone volume to tissue volume [BV/TV]) of each sample in different groups; then, bone samples were stained with H&E and Masson’s trichrome stain for general histology.Results: At 4 weeks, the BV/TV in the 25 µm PGS group was found higher than that in the 53 µm PGS and collagen groups. At 12 weeks, the bone defect site guided by the 25 µm PGS membrane was almost completely covered by the new bone. However, the site guided by the 53 µm PGS membrane or collagen membrane was covered only most of the defects and the left part of the defect was unoccupied. Histological observation further verified these findings.Conclusion: We thus concluded that the 25 µm PGS membrane played an advantageous role during 4–12 weeks as compared with those earlier degraded counterparts. Keywords: bone defect, biological membrane, degradation, salt-leaching technique, tibiaJian BWu WSong YTan NMa CDove Medical Pressarticlebone defectbiological membranedegradationsalt-leaching techniquetibiaMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 2683-2692 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
bone defect biological membrane degradation salt-leaching technique tibia Medicine (General) R5-920 |
spellingShingle |
bone defect biological membrane degradation salt-leaching technique tibia Medicine (General) R5-920 Jian B Wu W Song Y Tan N Ma C Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
description |
Bo Jian,1,2 Wei Wu,2 Yingliang Song,1 Naiwen Tan,3 Chao Ma1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, 710032, China; 2Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China; 3Department of Stomatology, Hospital 463 of PLA, Shenyang, Liaoning, People’s Republic of China Purpose: We aimed to fabricate guided bone regeneration (GBR) membrane using polyglycerol sebacate (PGS) and investigate the impact of scaffold pore size on osteogenesis.Materials and methods: PGS microporous membrane was fabricated by salt-leaching technique with various pore sizes. Twenty-eight male New Zealand rabbits were randomly divided into four groups: 25 µm PGS membrane, 53 µm PGS membrane, collagen membrane, and blank control group. Subsequently, standardized and critical-sized tibia defects were made in rabbits and the defective regions were covered with the specifically prepared membranes. After 4 and 12 weeks of in vivo incubation, bone samples were harvested from tibia. Micro-computed tomography scanning was performed on all bone samples. A three-dimensional visible representation of the constructs was obtained and used to compare the ratios of the ossifying volume to total construct volume (bone volume to tissue volume [BV/TV]) of each sample in different groups; then, bone samples were stained with H&E and Masson’s trichrome stain for general histology.Results: At 4 weeks, the BV/TV in the 25 µm PGS group was found higher than that in the 53 µm PGS and collagen groups. At 12 weeks, the bone defect site guided by the 25 µm PGS membrane was almost completely covered by the new bone. However, the site guided by the 53 µm PGS membrane or collagen membrane was covered only most of the defects and the left part of the defect was unoccupied. Histological observation further verified these findings.Conclusion: We thus concluded that the 25 µm PGS membrane played an advantageous role during 4–12 weeks as compared with those earlier degraded counterparts. Keywords: bone defect, biological membrane, degradation, salt-leaching technique, tibia |
format |
article |
author |
Jian B Wu W Song Y Tan N Ma C |
author_facet |
Jian B Wu W Song Y Tan N Ma C |
author_sort |
Jian B |
title |
Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
title_short |
Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
title_full |
Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
title_fullStr |
Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
title_full_unstemmed |
Microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
title_sort |
microporous elastomeric membranes fabricated with polyglycerol sebacate improved guided bone regeneration in a rabbit model |
publisher |
Dove Medical Press |
publishDate |
2019 |
url |
https://doaj.org/article/06d0ea5a55ae4c87abba4e6965a1b5d8 |
work_keys_str_mv |
AT jianb microporouselastomericmembranesfabricatedwithpolyglycerolsebacateimprovedguidedboneregenerationinarabbitmodel AT wuw microporouselastomericmembranesfabricatedwithpolyglycerolsebacateimprovedguidedboneregenerationinarabbitmodel AT songy microporouselastomericmembranesfabricatedwithpolyglycerolsebacateimprovedguidedboneregenerationinarabbitmodel AT tann microporouselastomericmembranesfabricatedwithpolyglycerolsebacateimprovedguidedboneregenerationinarabbitmodel AT mac microporouselastomericmembranesfabricatedwithpolyglycerolsebacateimprovedguidedboneregenerationinarabbitmodel |
_version_ |
1718396273638244352 |