Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales

In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaqueline G. Mesquita, Urszula Ostaszewska, Ewa Schmeidel, Małgorzata Zdanowicz
Formato: article
Lenguaje:EN
Publicado: AIMS Press 2021
Materias:
Acceso en línea:https://doaj.org/article/06de57332b07429680ab4616bee9f283
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $ We present many examples to illustrate our results, considering different time scales.