Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06de57332b07429680ab4616bee9f283 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:06de57332b07429680ab4616bee9f283 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:06de57332b07429680ab4616bee9f2832021-11-12T02:25:32ZGlobal attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales10.3934/mbe.20213391551-0018https://doaj.org/article/06de57332b07429680ab4616bee9f2832021-08-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021339?viewType=HTMLhttps://doaj.org/toc/1551-0018In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $ We present many examples to illustrate our results, considering different time scales. Jaqueline G. MesquitaUrszula OstaszewskaEwa Schmeidel Małgorzata Zdanowicz AIMS Pressarticledelayed population modeltime scalesglobal attractorsstabilityperiodicityBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 6819-6840 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
delayed population model time scales global attractors stability periodicity Biotechnology TP248.13-248.65 Mathematics QA1-939 |
spellingShingle |
delayed population model time scales global attractors stability periodicity Biotechnology TP248.13-248.65 Mathematics QA1-939 Jaqueline G. Mesquita Urszula Ostaszewska Ewa Schmeidel Małgorzata Zdanowicz Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
description |
In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by
$ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $
We present many examples to illustrate our results, considering different time scales. |
format |
article |
author |
Jaqueline G. Mesquita Urszula Ostaszewska Ewa Schmeidel Małgorzata Zdanowicz |
author_facet |
Jaqueline G. Mesquita Urszula Ostaszewska Ewa Schmeidel Małgorzata Zdanowicz |
author_sort |
Jaqueline G. Mesquita |
title |
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
title_short |
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
title_full |
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
title_fullStr |
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
title_full_unstemmed |
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
title_sort |
global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales |
publisher |
AIMS Press |
publishDate |
2021 |
url |
https://doaj.org/article/06de57332b07429680ab4616bee9f283 |
work_keys_str_mv |
AT jaquelinegmesquita globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales AT urszulaostaszewska globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales AT ewaschmeidel globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales AT małgorzatazdanowicz globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales |
_version_ |
1718431269802475520 |