Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales

In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaqueline G. Mesquita, Urszula Ostaszewska, Ewa Schmeidel, Małgorzata Zdanowicz
Formato: article
Lenguaje:EN
Publicado: AIMS Press 2021
Materias:
Acceso en línea:https://doaj.org/article/06de57332b07429680ab4616bee9f283
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:06de57332b07429680ab4616bee9f283
record_format dspace
spelling oai:doaj.org-article:06de57332b07429680ab4616bee9f2832021-11-12T02:25:32ZGlobal attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales10.3934/mbe.20213391551-0018https://doaj.org/article/06de57332b07429680ab4616bee9f2832021-08-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021339?viewType=HTMLhttps://doaj.org/toc/1551-0018In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $ We present many examples to illustrate our results, considering different time scales. Jaqueline G. MesquitaUrszula OstaszewskaEwa Schmeidel Małgorzata Zdanowicz AIMS Pressarticledelayed population modeltime scalesglobal attractorsstabilityperiodicityBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 6819-6840 (2021)
institution DOAJ
collection DOAJ
language EN
topic delayed population model
time scales
global attractors
stability
periodicity
Biotechnology
TP248.13-248.65
Mathematics
QA1-939
spellingShingle delayed population model
time scales
global attractors
stability
periodicity
Biotechnology
TP248.13-248.65
Mathematics
QA1-939
Jaqueline G. Mesquita
Urszula Ostaszewska
Ewa Schmeidel
Małgorzata Zdanowicz
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
description In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $ We present many examples to illustrate our results, considering different time scales.
format article
author Jaqueline G. Mesquita
Urszula Ostaszewska
Ewa Schmeidel
Małgorzata Zdanowicz
author_facet Jaqueline G. Mesquita
Urszula Ostaszewska
Ewa Schmeidel
Małgorzata Zdanowicz
author_sort Jaqueline G. Mesquita
title Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
title_short Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
title_full Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
title_fullStr Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
title_full_unstemmed Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
title_sort global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
publisher AIMS Press
publishDate 2021
url https://doaj.org/article/06de57332b07429680ab4616bee9f283
work_keys_str_mv AT jaquelinegmesquita globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales
AT urszulaostaszewska globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales
AT ewaschmeidel globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales
AT małgorzatazdanowicz globalattractorsextremalstabilityandperiodicityforadelayedpopulationmodelwithsurvivalrateontimescales
_version_ 1718431269802475520