Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t...
Guardado en:
Autores principales: | Jaqueline G. Mesquita, Urszula Ostaszewska, Ewa Schmeidel, Małgorzata Zdanowicz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06de57332b07429680ab4616bee9f283 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PCa dynamics with neuroendocrine differentiation and distributed delay
por: Leo Turner, et al.
Publicado: (2021) -
Stability and bifurcation analysis of SIQR for the COVID-19 epidemic model with time delay
por: Shishi Wang, et al.
Publicado: (2021) -
An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks
por: Meici Sun, et al.
Publicado: (2021) -
Global dynamics of alcoholism epidemic model with distributed delays
por: Salih Djillali, et al.
Publicado: (2021) -
Equivalence of sessile droplet dynamics under periodic and steady electric fields
por: Muhamed Ashfak Kainikkara, et al.
Publicado: (2021)