Using prediction polling to harness collective intelligence for disease forecasting
Abstract Background The global spread of COVID-19 has shown that reliable forecasting of public health related outcomes is important but lacking. Methods We report the results of the first large-scale, long-term experiment in crowd-forecasting of infectious-disease outbreaks, where a total of 562 vo...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06ef8ed3eaae479c8437604776dff12c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background The global spread of COVID-19 has shown that reliable forecasting of public health related outcomes is important but lacking. Methods We report the results of the first large-scale, long-term experiment in crowd-forecasting of infectious-disease outbreaks, where a total of 562 volunteer participants competed over 15 months to make forecasts on 61 questions with a total of 217 possible answers regarding 19 diseases. Results Consistent with the “wisdom of crowds” phenomenon, we found that crowd forecasts aggregated using best-practice adaptive algorithms are well-calibrated, accurate, timely, and outperform all individual forecasters. Conclusions Crowd forecasting efforts in public health may be a useful addition to traditional disease surveillance, modeling, and other approaches to evidence-based decision making for infectious disease outbreaks. |
---|