Complete Coverage Path Planning of an Unmanned Surface Vehicle Based on a Complete Coverage Neural Network Algorithm
In practical applications, an unmanned surface vehicle (USV) generally employs a task of complete coverage path planning for exploration in a target area of interest. The biological inspired neural network (BINN) algorithm has been extensively employed in path planning of mobile robots, recently. In...
Guardado en:
Autores principales: | Peng-Fei Xu, Yan-Xu Ding, Jia-Cheng Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/06fc35b707b64e99b4c4128f673af0d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Improved Dueling Deep Double-Q Network Based on Prioritized Experience Replay for Path Planning of Unmanned Surface Vehicles
por: Zhengwei Zhu, et al.
Publicado: (2021) -
A Swarm Intelligence Graph-Based Pathfinding Algorithm Based on Fuzzy Logic (SIGPAF): A Case Study on Unmanned Surface Vehicle Multi-Objective Path Planning
por: Charis Ntakolia, et al.
Publicado: (2021) -
Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities
por: Marco Cococcioni, et al.
Publicado: (2021) -
Path Planning for Underwater Information Gathering Based on Genetic Algorithms and Data Stochastic Models
por: Matteo Bresciani, et al.
Publicado: (2021) -
Station-Keeping Control of Autonomous and Remotely-Operated Vehicles for Free Floating Manipulation
por: Ningning Ding, et al.
Publicado: (2021)