Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast.
<h4>Background</h4>Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria.<h4>Methodology/principal findings</h4>We analyzed the effect of aerobic metabolism on oxi...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/070b013bcd0b41b28384e4e24064e0b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:070b013bcd0b41b28384e4e24064e0b9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:070b013bcd0b41b28384e4e24064e0b92021-11-25T06:11:22ZMitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast.1932-620310.1371/journal.pone.0002842https://doaj.org/article/070b013bcd0b41b28384e4e24064e0b92008-07-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18665268/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria.<h4>Methodology/principal findings</h4>We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells.<h4>Conclusion/significance</h4>Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.Alice ZuinNatalia GabrielliIsabel A CalvoSarela García-SantamarinaKwang-Lae HoeDong Uk KimHan-Oh ParkJacqueline HaylesJosé AytéElena HidalgoPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 3, Iss 7, p e2842 (2008) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Alice Zuin Natalia Gabrielli Isabel A Calvo Sarela García-Santamarina Kwang-Lae Hoe Dong Uk Kim Han-Oh Park Jacqueline Hayles José Ayté Elena Hidalgo Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
description |
<h4>Background</h4>Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria.<h4>Methodology/principal findings</h4>We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells.<h4>Conclusion/significance</h4>Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes. |
format |
article |
author |
Alice Zuin Natalia Gabrielli Isabel A Calvo Sarela García-Santamarina Kwang-Lae Hoe Dong Uk Kim Han-Oh Park Jacqueline Hayles José Ayté Elena Hidalgo |
author_facet |
Alice Zuin Natalia Gabrielli Isabel A Calvo Sarela García-Santamarina Kwang-Lae Hoe Dong Uk Kim Han-Oh Park Jacqueline Hayles José Ayté Elena Hidalgo |
author_sort |
Alice Zuin |
title |
Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
title_short |
Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
title_full |
Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
title_fullStr |
Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
title_full_unstemmed |
Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
title_sort |
mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2008 |
url |
https://doaj.org/article/070b013bcd0b41b28384e4e24064e0b9 |
work_keys_str_mv |
AT alicezuin mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT nataliagabrielli mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT isabelacalvo mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT sarelagarciasantamarina mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT kwanglaehoe mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT dongukkim mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT hanohpark mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT jacquelinehayles mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT joseayte mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast AT elenahidalgo mitochondrialdysfunctionincreasesoxidativestressanddecreaseschronologicallifespaninfissionyeast |
_version_ |
1718414023777583104 |