Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning

Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of mu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ryan Roussel, Juan Pablo Gonzalez-Aguilera, Young-Kee Kim, Eric Wisniewski, Wanming Liu, Philippe Piot, John Power, Adi Hanuka, Auralee Edelen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/07110b4ee93f4bd4919f427ea5497766
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:07110b4ee93f4bd4919f427ea5497766
record_format dspace
spelling oai:doaj.org-article:07110b4ee93f4bd4919f427ea54977662021-12-02T15:14:56ZTurn-key constrained parameter space exploration for particle accelerators using Bayesian active learning10.1038/s41467-021-25757-32041-1723https://doaj.org/article/07110b4ee93f4bd4919f427ea54977662021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25757-3https://doaj.org/toc/2041-1723Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of multiple free parameters.Ryan RousselJuan Pablo Gonzalez-AguileraYoung-Kee KimEric WisniewskiWanming LiuPhilippe PiotJohn PowerAdi HanukaAuralee EdelenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ryan Roussel
Juan Pablo Gonzalez-Aguilera
Young-Kee Kim
Eric Wisniewski
Wanming Liu
Philippe Piot
John Power
Adi Hanuka
Auralee Edelen
Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
description Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of multiple free parameters.
format article
author Ryan Roussel
Juan Pablo Gonzalez-Aguilera
Young-Kee Kim
Eric Wisniewski
Wanming Liu
Philippe Piot
John Power
Adi Hanuka
Auralee Edelen
author_facet Ryan Roussel
Juan Pablo Gonzalez-Aguilera
Young-Kee Kim
Eric Wisniewski
Wanming Liu
Philippe Piot
John Power
Adi Hanuka
Auralee Edelen
author_sort Ryan Roussel
title Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
title_short Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
title_full Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
title_fullStr Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
title_full_unstemmed Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
title_sort turn-key constrained parameter space exploration for particle accelerators using bayesian active learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/07110b4ee93f4bd4919f427ea5497766
work_keys_str_mv AT ryanroussel turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT juanpablogonzalezaguilera turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT youngkeekim turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT ericwisniewski turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT wanmingliu turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT philippepiot turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT johnpower turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT adihanuka turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
AT auraleeedelen turnkeyconstrainedparameterspaceexplorationforparticleacceleratorsusingbayesianactivelearning
_version_ 1718387550173790208