Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of mu...
Guardado en:
Autores principales: | Ryan Roussel, Juan Pablo Gonzalez-Aguilera, Young-Kee Kim, Eric Wisniewski, Wanming Liu, Philippe Piot, John Power, Adi Hanuka, Auralee Edelen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07110b4ee93f4bd4919f427ea5497766 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncertainty quantification for deep learning in particle accelerator applications
por: Aashwin Ananda Mishra, et al.
Publicado: (2021) -
Driver steering assistance for collision avoidance and turning performance optimization by constrained MPC
por: Nobutaka WADA, et al.
Publicado: (2020) -
Automation and control of laser wakefield accelerators using Bayesian optimization
por: R. J. Shalloo, et al.
Publicado: (2020) -
Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI.
por: Ty O Easley, et al.
Publicado: (2021) -
Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI
por: Ty O. Easley, et al.
Publicado: (2021)