Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization

Abstract Skillful sea-ice prediction in the Antarctic Ocean remains a big challenge due to paucity of sea-ice observations and insufficient representation of sea-ice processes in climate models. Using a coupled general circulation model, this study demonstrates skillful prediction of the summertime...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yushi Morioka, Doroteaciro Iovino, Andrea Cipollone, Simona Masina, Swadhin K. Behera
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0722b21569a24a20b7f46f604aacbebb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0722b21569a24a20b7f46f604aacbebb
record_format dspace
spelling oai:doaj.org-article:0722b21569a24a20b7f46f604aacbebb2021-12-02T17:52:23ZSummertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization10.1038/s41598-021-91042-42045-2322https://doaj.org/article/0722b21569a24a20b7f46f604aacbebb2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91042-4https://doaj.org/toc/2045-2322Abstract Skillful sea-ice prediction in the Antarctic Ocean remains a big challenge due to paucity of sea-ice observations and insufficient representation of sea-ice processes in climate models. Using a coupled general circulation model, this study demonstrates skillful prediction of the summertime sea-ice concentration (SIC) in the Weddell Sea with wintertime SIC and sea-ice thickness (SIT) initializations. During low sea-ice years of the Weddell Sea, negative SIT anomalies initialized in June retain the memory throughout austral winter owing to horizontal advection of the SIT anomalies. The SIT anomalies continue to develop in austral spring owing to more incoming solar radiation and the associated warming of mixed layer, contributing to further sea-ice decrease during late austral summer-early autumn. Concomitantly, the model reasonably reproduces atmospheric circulation anomalies during austral spring in the Amundsen-Bellingshausen Seas besides the Weddell Sea. These results provide evidence that the wintertime SIT initialization benefits skillful summertime sea-ice prediction in the Antarctic Seas.Yushi MoriokaDoroteaciro IovinoAndrea CipolloneSimona MasinaSwadhin K. BeheraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yushi Morioka
Doroteaciro Iovino
Andrea Cipollone
Simona Masina
Swadhin K. Behera
Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
description Abstract Skillful sea-ice prediction in the Antarctic Ocean remains a big challenge due to paucity of sea-ice observations and insufficient representation of sea-ice processes in climate models. Using a coupled general circulation model, this study demonstrates skillful prediction of the summertime sea-ice concentration (SIC) in the Weddell Sea with wintertime SIC and sea-ice thickness (SIT) initializations. During low sea-ice years of the Weddell Sea, negative SIT anomalies initialized in June retain the memory throughout austral winter owing to horizontal advection of the SIT anomalies. The SIT anomalies continue to develop in austral spring owing to more incoming solar radiation and the associated warming of mixed layer, contributing to further sea-ice decrease during late austral summer-early autumn. Concomitantly, the model reasonably reproduces atmospheric circulation anomalies during austral spring in the Amundsen-Bellingshausen Seas besides the Weddell Sea. These results provide evidence that the wintertime SIT initialization benefits skillful summertime sea-ice prediction in the Antarctic Seas.
format article
author Yushi Morioka
Doroteaciro Iovino
Andrea Cipollone
Simona Masina
Swadhin K. Behera
author_facet Yushi Morioka
Doroteaciro Iovino
Andrea Cipollone
Simona Masina
Swadhin K. Behera
author_sort Yushi Morioka
title Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
title_short Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
title_full Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
title_fullStr Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
title_full_unstemmed Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization
title_sort summertime sea-ice prediction in the weddell sea improved by sea-ice thickness initialization
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0722b21569a24a20b7f46f604aacbebb
work_keys_str_mv AT yushimorioka summertimeseaicepredictionintheweddellseaimprovedbyseaicethicknessinitialization
AT doroteaciroiovino summertimeseaicepredictionintheweddellseaimprovedbyseaicethicknessinitialization
AT andreacipollone summertimeseaicepredictionintheweddellseaimprovedbyseaicethicknessinitialization
AT simonamasina summertimeseaicepredictionintheweddellseaimprovedbyseaicethicknessinitialization
AT swadhinkbehera summertimeseaicepredictionintheweddellseaimprovedbyseaicethicknessinitialization
_version_ 1718379210072915968